Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Delft nano-detector very promising for remote cosmic realms

18.01.2007
A miniscule but super-sensitive sensor can help solve the mysteries of outer space. Cosmic radiation, which contains the terahertz frequencies that the sensors detect, offers astronomers important new information about the birth of star systems and planets.

Merlijn Hajenius developed these sensors for Delft University of Technology's Kavli Institute of Nanoscience, in close cooperation with the SRON Netherlands Institute for Space Research. He will receive his Delft University of Technology PhD degree on 19 January based on this research subject.


Coloured scanning electron microscope image showing a superconducting 'hot electron bolometer' (HEB) for detection of terahertz radiation. The superconducting niobiumnitride nano-bridge is shown at the center which connects to the on-chip (partly shown) gold spiral antenna via additional contact pads. The strip covering the bridge is a left-over from the processing.

The detector, called a 'hot electron bolometer', is based on the well-known phenomenon that electrical resistance increases when something is heated up. The use of a superconductor renders the detector extremely sensitive and allows it to be used for radiation that until now could not be so well detected.

The detector works for terahertz frequencies, which astronomers and atmospheric scientists are extremely interested in. The detector's core is comprised of a small piece of superconducting niobiumnitride. Clean superconducting contacts that are kept at a constant temperature of –268 °C (five degrees above absolute zero) are attached to both ends of the superconducting niobiumnitride.

A miniscule gold antenna catches the terahertz-radiation and sends it via the contacts to the small piece of niobiumnitride, which functions as an extremely sensitive thermometer. "By reading this thermometer, we can very accurately measure the terahertz radiation. In Delft, we have set a world record with this detector in the frequency area above 1.5 terahertz," Hajenius says proudly.

The results have convinced astronomers to use these detectors for the new observatory in Antarctica (HEAT), and a new space mission (ESPRIT) has also been proposed.

The ‘maiden flight’ of Hajenius’ detector is planned for next year, but it will not take place in a satellite used for studying cosmic clouds, but rather in a balloon that will study the earth's atmosphere. The TELIS instrument, which SRON is currently working on, will be equipped with a Delft University of Technology detector and will measure the molecules in the atmosphere above Brazil that influence the formation of the hole in the ozone layer.

Frank Nuijens | alfa
Further information:
http://www.tudelft.nl

More articles from Physics and Astronomy:

nachricht Gamma rays will reach beyond the limits of light
23.10.2017 | Chalmers University of Technology

nachricht Creation of coherent states in molecules by incoherent electrons
23.10.2017 | Tata Institute of Fundamental Research

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>