Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


A UGR thesis demonstrates how to teach Physics by means of cartoons

Are cartoons a motivational element in Physics and Chemistry classes? Can we get to know if the cartoons broadcasted in TV channels are a source of previous ideas and conceptual errors for teenagers?

These are some of the many questions posed by José Miguel Vílchez González in his thesis Física y Dibujos Animados. "Una estrategia de alfabetización científica y audiovisual en la Educación Secundaria" (Physics and Cartoons. A scientific and audiovisual literacy strategy in Secondary Education), supervised by Professor Francisco Javier Perales Palacios, of the Department of Experimental Sciences of the University of Granada (Universidad de Granada []).

José Miguel Vílchez´s research work intends to connect scientific, daily and school knowledge through a methodological resource which involves supervising and discussing cartoons from the perspective of the laws of Physics.

Thus, his objectives are: using comparisons among situations presented in cartoon programmes and real situations to lead to conceptual changes in pupils; stimulating pupils´ critic analysis when it comes to distinguish between reality and fiction, in and outside the classroom; analysing the image of science and scientists in the cartoons, comparing it with that presented in other media; checking if cartoons can be used in the classroom as an assessing resource; connecting scientific, daily and school knowledge through experiences in the classroom, and contributing to the scientific and television literacy of Secondary Education students.

According to José Miguel Vílchez, “the didactics of Physic in current Secondary Education is in a in a delicate situation for two reasons: on the one hand, most teenagers think that Physics is a difficult subject disconnected with their normal life, which is causing a continuous decrease in the number of students who read the subject in all the educative levels. This situation can change by using more entertaining and accessible teaching-learning methodologies, closer to daily life. On the other hand, contemporary society offers us a wide range of information sources that, sometimes, broadcast scientific knowledge. Media, and especially television, are those which cause more impact on citizens. The problem arises when their messages are assimilated as something we can not influence, becoming sources of an anarchical bombardment of information that conditions our way of thinking and, sometimes, of doing things. They also are a source of mistaken previous ideas for citizens”.

The importance of television

In industrialized countries, watching TV is the second activity –after sleep- to which children devote more time and cartoons are one of the children and youngsters´ favourite programmes.

We can thus deduce that cartoon programs could well constitute a culture medium for the teaching/learning of Physics; at the same time –the author of the thesis states-- “it is an important step for teenagers´ scientific and TV literacy, stimulating a critic spirit before the messages of this media”.

José Miguel Vílchez González´s thesis suggests analysing, from a scientific point of view, chapters or sequences TV cartoon chapters, to identify phenomenon which break the laws of the Physics. This way students analyse both physical concepts and media messages, while they carry out this type of experiences in their everyday life; it is also a powerful tool to raise issues for discussion among students in the classroom, an important and, sometimes, infrequent activity.

According to the author of the thesis, they have achieved their three main objectives: “motivation to the subject, promotion of scientific and TV literacy and connection between the classroom and daily life. Results have been satisfactory in general and we have achieved our main goals, so we intend to continue doing research on this line”.

Antonio Marín Ruiz | alfa
Further information:

More articles from Physics and Astronomy:

nachricht Novel light sources made of 2D materials
28.10.2016 | Julius-Maximilians-Universität Würzburg

nachricht OU-led team discovers rare, newborn tri-star system using ALMA
27.10.2016 | University of Oklahoma

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Steering a fusion plasma toward stability

28.10.2016 | Power and Electrical Engineering

Bioluminescent sensor causes brain cells to glow in the dark

28.10.2016 | Life Sciences

Activation of 2 genes linked to development of atherosclerosis

28.10.2016 | Life Sciences

More VideoLinks >>>