Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First view of a newborn millisecond pulsar?

14.02.2002


Artist’s impression of millisecond pulsar and companion


The globular cluster NGC 6397


Combining Hubble Space Telescope images with radio observations has revealed a highly unusual system consisting of a fast spinning pulsar and a bloated red companion star. The existence of the system is something of a mystery - the best explanation so far is that we have our first view of a millisecond pulsar just after it has been `spun up` by its red companion star.

Although more than 90 specimens of the exotic species of fast-spinning `millisecond pulsars` are known today, no observations have yet been made to back up the theory of how they reached this state. A series of observations of the millisecond pulsar PSR J1740-5340 (spinning at 274 times per second) and its companion star from the ESA/NASA Hubble Space Telescope and the Parkes radio telescope seem to show the final stage of the pulsar acceleration process for the first time.
The generally favoured `recycling scenario` describing the creation of millisecond pulsars proposes that an old, slowly rotating neutron star begins to absorb matter from its elderly companion star, typically a red giant. The matter hits the surface of the neutron star and transfers energy to make it rotate faster. The process ends when the pulsar has been revitalised and is rotating at hundreds of times per second (hence a millisecond pulsar), and its companion almost emptied of matter and turned into a white dwarf.


A team of scientists from Bologna Astronomical Observatory conducted a series of Hubble observations of the pulsar-companion system in the globular cluster NGC 6397. The observations show that the millisecond pulsar`s companion is not the expected white dwarf, but a bloated red star, whose radius is about 100 times greater than that of a white dwarf and at least five times greater than a normal star of similar mass! This unique couple orbit around each other in 1.35 days.

The observations also indicate the abnormal presence of large amounts of gas in the system. This gas is released from the bloated companion star and soon will be swept away by the recently accelerated pulsar. Once the pulsar has been spun up it can no longer absorb gas from the companion.

Lead astronomer Francesco Ferraro explains: "We have certainly discovered a very unusual pair. A system consisting of a millisecond pulsar and a star that is not a white dwarf has never been seen before. Our favoured theory is that we are seeing the system before the bloated red star has been `emptied` of gas and turned into a white dwarf. If this compelling hypothesis is wrong then the companion star could be a normal star in the globular cluster that has been captured by the pulsar by chance. Maybe it has expelled the white dwarf that we normally find in such systems."

At last astronomers have observations to back the theory of millisecond pulsar births, and the discovery opens a new window on the evolution of millisecond pulsars.

Erica Rolfe | alphagalileo
Further information:
http://www.esa.int

More articles from Physics and Astronomy:

nachricht Extremely fine measurements of motion in orbiting supermassive black holes
28.06.2017 | Stanford University

nachricht Ultra-compact phase modulators based on graphene plasmons
27.06.2017 | ICFO-The Institute of Photonic Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Extensive Funding for Research on Chromatin, Adrenal Gland, and Cancer Therapy

28.06.2017 | Awards Funding

Predicting eruptions using satellites and math

28.06.2017 | Earth Sciences

Extremely fine measurements of motion in orbiting supermassive black holes

28.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>