Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Northern lights research enters final frontier

17.01.2007
Canadian scientists help new NASA satellite project gain a closer look at the aurora borealis

An international team of scientists -- including physicists from the University of Calgary -- will begin gathering the most detailed information yet about the ever-changing northern lights, as a multi-year research project enters its ultimate phase with the launch of five NASA satellites from Cape Canaveral next month.

Researchers in the U of C's Institute for Space Research will play a critical role in a five-satellite NASA mission called THEMIS (Time History of Events and Macroscale Interactions during Substorms) which is scheduled for launch at 6:07 pm (Eastern Time) on Feb. 15, just over a month from today. For their part in the program, the U of C's THEMIS team is operating a network of Ground-Based Observatories (GBOs) across Northern Canada. The THEMIS satellites will probe dynamic processes of astrophysical interest in near-Earth space, while the GBOs will create mosaics of the night sky, capturing changes in the northern lights that are an essential part of the information needed to answer the questions that THEMIS is targeting. The ground and space-based THEMIS observations will enable scientists to pinpoint the cause of brilliant explosions of shimmering light known as "auroral substorms."

"This is a very exciting moment for us because we are expecting to greatly enhance our understanding of these space disturbances that are both beautiful and powerful," said U of C physics professor Dr. Eric Donovan, leader of the Canadian component of THEMIS.

"The next few years are going to be very busy for us and our THEMIS colleagues at NASA and the University of California at Berkeley," Donovan said.

The U of C operates 16 GBOs located in communities across northern Canada (four more in Alaska are operated by Berkeley), which consist of automated all-sky cameras that use time lapse digital imaging and special optics to record auroras in the northern skies. The five satellites are on orbits designed so that they come together in conjunctions over central Canada every four days. During these conjunctions, the cameras will be used to determine the onset of auroral substorms, while instruments on the five satellites will provide measurements of changes in energetic particle populations and the magnetic field in space. The mission will last at least two years, during which time the GBOs will record more than 200 million photographs.

Auroras are caused by the interaction of charged particles from the sun, also known as the solar wind, with the Earth's magnetic field. Auroral substorms are the unpredictable bursts in auroral activity that take place when energy stored in the tail of the magnetic field is released and travel along magnetic lines to the polar regions where they cause spectacular displays of iridescent light. These storms are not fully understood and previous studies have not been able to determine where in the magnetosphere the energy of the solar wind transforms into explosive auroras. Auroral substorms have also been linked to disturbances of telecommunications systems on Earth and damage to satellites.

The NASA-funded THEMIS mission is led by the Space Science Laboratory at the University of California at Berkeley, while the Canadian component of the project is funded by the Canadian Space Agency.

In Canada, THEMIS will ultimately involve scientists with from the Universities of Alberta, Saskatchewan, New Brunswick, and Calgary, Athabasca University, the Canadian Space Agency, and Natural Resources Canada.

Most of the GBOs operate in small communities in the north including Whitehorse, Inuvik, Sanikiluak, and Gillam. The GBOs are run with the generous assistance of community volunteers who help monitor and maintain the equipment.

"Our custodians do a great job of looking after the cameras and playing host to our project in their communities," said THEMIS Canada deployment and site manager Mike Greffen. "They are a critical link in a large and important NASA-CSA mission."

For more information:

THEMIS project website: http://sprg.ssl.berkeley.edu/themis
University of Calgary's THEMIS website: http://aurora.phys.ucalgary.ca/themis/
Canadian Space Agency's THEMIS website: http://www.space.gc.ca/asc/eng/sciences/themis.asp

NASA website: www.nasa.gov

Grady Semmens | EurekAlert!
Further information:
http://www.ucalgary.ca

More articles from Physics and Astronomy:

nachricht A chip for environmental and health monitoring
15.12.2017 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht New type of smart windows use liquid to switch from clear to reflective
14.12.2017 | The Optical Society

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

New technique could make captured carbon more valuable

15.12.2017 | Life Sciences

First-of-its-kind chemical oscillator offers new level of molecular control

15.12.2017 | Life Sciences

A chip for environmental and health monitoring

15.12.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>