Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Swift team awarded top high energy astronomy prize

17.01.2007
This year's prestigious Bruno Rossi Prize has been awarded to NASA scientist Neil Gehrels and the team of scientists working on NASA’s Swift Gamma-Ray Burst Explorer mission, including UK scientists from the University of Leicester and University College London’s Mullard Space Science Laboratory, for major advances in the scientific understanding of gamma-ray bursts.

The prize is given each year by the High Energy Astrophysics Division (HEAD) of the American Astronomical Society (AAS), the largest professional organization of astronomers in the United States.

Swift, which launched on November 20, 2004, was designed to rapidly detect, locate, and observe gamma-ray bursts (GRBs), powerful cosmic explosions which astronomers think are the birth cries of black holes. GRBs were first observed in the 1960s, and were a complete mystery until the mid 1990s. To date, Swift has detected over 200 GRBs, and its rapid response – it was named after the bird, which catches its prey “on the fly” – has been critical to understanding these titanic events.

“This is a great recognition of all the wonderful science coming from Swift and the years of hard work that the team has done to make it possible,” said Neil Gehrels, the Principal Investigator for the Swift mission. “Swift is a remarkable machine which is still going strong. We expect even more great things from it over the coming years.”

UK scientists from UCL’s Mullard Space Science Laboratory and the University of Leicester have a strong involvement in two of the telescopes onboard Swift and continue to support the ongoing operation of the spacecraft and its instruments and have been involved in many of the new discoveries made by Swift. This is the first time that a UK mission team has been awarded the Rossi Prize.

Professor Keith Mason, UK lead investigator on the Ultra Violet/Optical Telescope and Chief Executive of the Particle Physics and Astronomy Research Council (PPARC) said, “This is a fantastic accolade for the entire Swift team. To date the spacecraft has already made observations to determine the precise location of short gamma-ray bursts and discovered enormously bright X-ray flares in the early afterglows.”

Dr Julian Osborne, Lead Investigator for Swift at the University of Leicester said, "Swift has been wonderfully successful at discovering new things about these incredibly energetic explosions in the distant universe, we are especially proud that the X-ray camera provided by the University of Leicester has been responsible for most of these discoveries. The Leicester team greatly appreciate the honour of this award, and look forward to learning more with Swift in this fascinating area of science."

Among Swift’s notable observations have been:

- The first detection of an afterglow (the lingering, fading glow) of a short burst, GRB050509, thought to be caused by the collision of two ultradense neutron stars.

- The detection of the most distant GRB ever seen (GRB 050904), lying at a distance of 13 billion light years from the Earth.

- The discovery of the nearby GRB 060218 that was coincident with a supernova explosion (SN 2006aj)

- X-ray and UV observations of NASA’s Deep Impact probe when it smashed into comet 9/P Tempel 1 in July 2005, helping solar system scientists determine how much debris was ejected by the impact.

- Highly-detailed data of a powerful flare from a nearby magnetar, a tremendously magnetic neutron star, which was so bright it saturated Swift’s detectors and actually physically impacted the Earth’s magnetic field in December 2004.

Besides observing GRBs, Swift has several secondary scientific goals, including observing supernovae (powerful stellar explosions which can be used to map out the shape and fate of the Universe) and making the first high-energy survey of the entire sky since the 1980s.

The HEAD-AAS awards the Rossi Prize in recognition of significant contributions as well as recent and original work in high-energy astrophysics. Past awards have been given for work, both theoretical and observational, in the fields of neutrinos, cosmic rays, gamma rays and X-rays. The prize is in honor of Professor Bruno Rossi, an authority on cosmic-ray physics and a pioneer in the field of X-ray astronomy. Bruno Rossi died in 1993. The prize also includes an engraved certificate and a £765 ($1,500) award.

For more information on Swift, visit http://www.swift.ac.uk/ and http://swift.gsfc.nasa.gov, and for a list of Swift’s significant observations see http://swift.gsfc.nasa.gov/docs/swift/results/releases/.

Rossi Prize information is located at http://www.aas.org/head/rossi/rossi.prize.html.

Contacts
Gill Ormrod – PPARC Press Office
Tel: 01793 442012. Mobile: 0781 8013509
Email: gill.ormrod@pparc.ac.uk
Dr. Julian Osborne, Department of Physics & Astronomy, University of Leicester
Tel: 0116 252 3598. Email: julo@star.le.ac.uk
Dr. Mat Page, Mullard Space Science Laboratory, UCL
Tel: 01483 204 283. Email: mjp@mssl.ucl.ac.uk
Lynn Cominsky, Swift PIO
Tel: (+1) 707-664-2655Email: lynnc@universe.sonoma.edu
Dr. Ilana Harrus - High Energy Astrophysics Division Press Officer
Tel: (+1) 301-286-9649
Email: imh@lheapop.gsfc.nasa.gov

Gill Ormrod | alfa
Further information:
http://www.pparc.ac.uk

More articles from Physics and Astronomy:

nachricht New NASA study improves search for habitable worlds
20.10.2017 | NASA/Goddard Space Flight Center

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>