Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Swift team awarded top high energy astronomy prize

17.01.2007
This year's prestigious Bruno Rossi Prize has been awarded to NASA scientist Neil Gehrels and the team of scientists working on NASA’s Swift Gamma-Ray Burst Explorer mission, including UK scientists from the University of Leicester and University College London’s Mullard Space Science Laboratory, for major advances in the scientific understanding of gamma-ray bursts.

The prize is given each year by the High Energy Astrophysics Division (HEAD) of the American Astronomical Society (AAS), the largest professional organization of astronomers in the United States.

Swift, which launched on November 20, 2004, was designed to rapidly detect, locate, and observe gamma-ray bursts (GRBs), powerful cosmic explosions which astronomers think are the birth cries of black holes. GRBs were first observed in the 1960s, and were a complete mystery until the mid 1990s. To date, Swift has detected over 200 GRBs, and its rapid response – it was named after the bird, which catches its prey “on the fly” – has been critical to understanding these titanic events.

“This is a great recognition of all the wonderful science coming from Swift and the years of hard work that the team has done to make it possible,” said Neil Gehrels, the Principal Investigator for the Swift mission. “Swift is a remarkable machine which is still going strong. We expect even more great things from it over the coming years.”

UK scientists from UCL’s Mullard Space Science Laboratory and the University of Leicester have a strong involvement in two of the telescopes onboard Swift and continue to support the ongoing operation of the spacecraft and its instruments and have been involved in many of the new discoveries made by Swift. This is the first time that a UK mission team has been awarded the Rossi Prize.

Professor Keith Mason, UK lead investigator on the Ultra Violet/Optical Telescope and Chief Executive of the Particle Physics and Astronomy Research Council (PPARC) said, “This is a fantastic accolade for the entire Swift team. To date the spacecraft has already made observations to determine the precise location of short gamma-ray bursts and discovered enormously bright X-ray flares in the early afterglows.”

Dr Julian Osborne, Lead Investigator for Swift at the University of Leicester said, "Swift has been wonderfully successful at discovering new things about these incredibly energetic explosions in the distant universe, we are especially proud that the X-ray camera provided by the University of Leicester has been responsible for most of these discoveries. The Leicester team greatly appreciate the honour of this award, and look forward to learning more with Swift in this fascinating area of science."

Among Swift’s notable observations have been:

- The first detection of an afterglow (the lingering, fading glow) of a short burst, GRB050509, thought to be caused by the collision of two ultradense neutron stars.

- The detection of the most distant GRB ever seen (GRB 050904), lying at a distance of 13 billion light years from the Earth.

- The discovery of the nearby GRB 060218 that was coincident with a supernova explosion (SN 2006aj)

- X-ray and UV observations of NASA’s Deep Impact probe when it smashed into comet 9/P Tempel 1 in July 2005, helping solar system scientists determine how much debris was ejected by the impact.

- Highly-detailed data of a powerful flare from a nearby magnetar, a tremendously magnetic neutron star, which was so bright it saturated Swift’s detectors and actually physically impacted the Earth’s magnetic field in December 2004.

Besides observing GRBs, Swift has several secondary scientific goals, including observing supernovae (powerful stellar explosions which can be used to map out the shape and fate of the Universe) and making the first high-energy survey of the entire sky since the 1980s.

The HEAD-AAS awards the Rossi Prize in recognition of significant contributions as well as recent and original work in high-energy astrophysics. Past awards have been given for work, both theoretical and observational, in the fields of neutrinos, cosmic rays, gamma rays and X-rays. The prize is in honor of Professor Bruno Rossi, an authority on cosmic-ray physics and a pioneer in the field of X-ray astronomy. Bruno Rossi died in 1993. The prize also includes an engraved certificate and a £765 ($1,500) award.

For more information on Swift, visit http://www.swift.ac.uk/ and http://swift.gsfc.nasa.gov, and for a list of Swift’s significant observations see http://swift.gsfc.nasa.gov/docs/swift/results/releases/.

Rossi Prize information is located at http://www.aas.org/head/rossi/rossi.prize.html.

Contacts
Gill Ormrod – PPARC Press Office
Tel: 01793 442012. Mobile: 0781 8013509
Email: gill.ormrod@pparc.ac.uk
Dr. Julian Osborne, Department of Physics & Astronomy, University of Leicester
Tel: 0116 252 3598. Email: julo@star.le.ac.uk
Dr. Mat Page, Mullard Space Science Laboratory, UCL
Tel: 01483 204 283. Email: mjp@mssl.ucl.ac.uk
Lynn Cominsky, Swift PIO
Tel: (+1) 707-664-2655Email: lynnc@universe.sonoma.edu
Dr. Ilana Harrus - High Energy Astrophysics Division Press Officer
Tel: (+1) 301-286-9649
Email: imh@lheapop.gsfc.nasa.gov

Gill Ormrod | alfa
Further information:
http://www.pparc.ac.uk

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>