Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Alberta space research to solve aurora mystery

12.01.2007
On February 15, NASA will launch the largest number of scientific satellites ever sent into orbit aboard a single rocket. A handful of Alberta scientists will be at Kennedy Space Center watching and waiting. For Dr. Ian Mann and Dr. John Samson, researchers in the Department of Physics at the University of Alberta, the real fun will begin when the satellites start taking measurements in the eye of space storms above observatories spread across North America.

The satellites, all carrying identical suites of electric, magnetic, and particle detectors, are part of the NASA THEMIS mission (for "time history of events and macroscale interactions during substorms"). THEMIS is a collaborative effort of scientists from the US, Canada and Europe that will study processes occurring in near-Earth space and elsewhere in the universe.

Mann, a THEMIS co-Investigator and Canada Research Chair in Space Physics says "with an unprecedented flotilla of five research satellites flying in formation we will discover for the first time how energy release is triggered in extreme space weather events."

Given the vulnerability of satellites to fluxes of energetic particles, the results will help scientists better understand how to protect them during near-Earth space storms. A beautiful and fascinating side benefit of this project will be discovering why the most spectacular auroral displays look the way they do.

Auroras are powered by solar wind - a stream of charged particles expelled by the sun. This wind blows past the earth at about 400-700 km per second and generates storms in the earth's magnetic environment. In the polar regions, these explode into spectacular auroral displays.

"By studying these explosions in the natural laboratory of near-Earth space, we can also learn how energy is explosively released in magnetised astrophysical objects in the universe. This also has important implications for magnetic confinement in nuclear fusion power reactors" adds Mann.

The THEMIS satellites will fly in carefully coordinated orbits, and every four days, will line up over Canada along the Earth's magnetic tail to track disturbances in near-Earth space in the magnetosphere.

Satellite data from the THEMIS mission will be compared to observations from ground stations across the Canadian Arctic. Since most of the readily accessible land under the northern-hemisphere auroral zone is in Canada, 16 of the 20 ground-based observatories will be set up in Canada, with the other four in Alaska. The observatories will host magnetometers which will monitor the magnetic signatures of explosions in near-Earth space known as substorms, as well as automated all-sky cameras.

Magnetometer data at some of the THEMIS ground-based observatory sites will be provided by the CARISMA (Canadian Array for Real-time Investigations of Magnetic Activity) magnetometer array. Dr. Mann is the Principal Investigator of CARISMA, operated by the University of Alberta and funded by the Canadian Space Agency. A $1.3M expansion of the CARISMA array was recently funded by CFI.

Data collected from the observatories and the THEMIS satellites will be analyzed by teams of scientists at the University of Alberta working with Dr's Mann and Samson. Data from the THEMIS mission will be made available over the internet using the computing facilities at the University of Alberta in a project led by Dr. Robert Rankin in the Physics Department.

In Canada, THEMIS partners include the University of Alberta, University of Calgary and the Canadian Space Agency. The THEMIS Principal Investigator institute is the University of California, Berkeley.

Julie Naylor | EurekAlert!
Further information:
http://www.ualberta.ca

More articles from Physics and Astronomy:

nachricht Ultra-compact phase modulators based on graphene plasmons
27.06.2017 | ICFO-The Institute of Photonic Sciences

nachricht Smooth propagation of spin waves using gold
26.06.2017 | Toyohashi University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>