Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chandra discovers light echo from the Milky Way's black hole

12.01.2007
Like cold case investigators, astronomers have used NASA's Chandra X-ray Observatory to uncover evidence of a powerful outburst from the giant black hole at the Milky Way's center.

A light echo was produced when X-ray light generated by gas falling into the Milky Way's supermassive black hole, known as Sagittarius A* (pronounced "A-star"), was reflected off gas clouds near the black hole. While the primary X-rays from the outburst would have reached Earth about 50 years ago, the reflected X-rays took a longer path and arrived in time to be recorded by Chandra.

"This dramatic event happened before we had satellites in space that could detect it," said Michael Muno of the California Institute of Technology in Pasadena. "So, it's remarkable that we can use Chandra to dig into the past and see this monster black hole's capacity for destruction."

Previously, scientists have used Chandra to directly detect smaller and more recent outbursts from the black hole. This latest outburst revealed by the X-ray echo was about 1,000 times brighter and lasted well over 1,000 times longer than any of the recent outbursts observed by Chandra.

Theory predicts that an outburst from Sagittarius A* would cause X-ray emission from the clouds to vary in both intensity and shape. Muno and his team found these changes for the first time, thus ruling out other interpretations. The latest results corroborate other independent, but indirect, evidence for light echoes generated by the black hole in the more distant past.

Scientists have long known that Sagittarius A*, with a mass of about 3 million suns, lurked at the center for Milky Way. However, the black hole is incredibly faint at all wavelengths, especially in X-rays.

"This faintness implies that stars and gas rarely get close enough to the black hole to be in any danger," said co-author Frederick K. Baganoff of the Massachusetts Institute of Technology in Cambridge. "The huge appetite is there, but it's not being satisfied."

During the outburst, the area close to the black hole would have been about 100,000 times brighter than it is currently. If such an outburst had occurred more recently, it likely would have been detected by an X-ray instrument, or would have produced similar features in other nearby clouds.

"Our data show it has been 50 years or so since the black hole had its last decent meal," said Muno. "This is nothing like the feasting that black holes in other galaxies sometimes enjoy, but it gives unique knowledge about the feeding habits of our closest supermassive black hole."

The details of how Sagittarius A* feeds remain unclear. For example, one possibility is that the black hole grows by pulling in matter from the winds of nearby young stars. Also, if there is a disk of material swirling around Sagittarius A*, it might be unstable in such a way that material migrates toward the black hole's edge in clumps, emitting X-rays before disappearing from the universe forever. The theoretical work is still being developed.

Studying this light echo is also important because it illuminates and probes the poorly understood molecular clouds near the center of the galaxy. In particular, it gives information about the dense cores of these clouds where new stars may be forming.

Variability in the X-ray emission between three Chandra observations in 2002, 2004 and 2005 argues against an alternate source for the light echo, which is that it came from a neutron star or black hole pulling matter away from a binary companion. This explanation is not favored because the data show the outburst would have been unusually long and bright for such a binary.

These results were presented at the American Astronomical Society meeting in Seattle, Wash., and will appear in an upcoming issue of The Astrophysical Journal Letters. NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for the agency's Science Mission Directorate. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center, Cambridge, Mass.

Megan Watzke | EurekAlert!
Further information:
http://www.cfa.harvard.edu

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>