Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

European gravity mission to benefit from ion thruster precision

12.01.2007
Final testing of the ion thrusters that will enable a European space mission to measure and map the Earth's gravity field in far greater detail than ever previously achieved has been completed.

QinetiQ's T5 ion thrusters will provide high precision drag compensation for the European Space Agency (ESA) GOCE spacecraft, due for launch later this year. The data captured by GOCE will contribute significantly to our understanding of the Earth's structure, climate and the impacts of climate change.

QinetiQ was awarded a £4.6 million contract by Astrium, ESA's prime contractor for the GOCE platform, in 2001 to provide the two Ion Thruster Assemblies (ITAs) for the spacecraft. By using QinetiQ's T5 ion thruster the spacecraft will be able to compensate for the drag experienced in orbit, thereby allowing highly accurate measurements of the Earth's gravity field.

Travelling at 8 kilometres per second and operating at an orbital altitude of 240 kilometres, the spacecraft will experience a small but significant disturbance in its motion from atmospheric drag. This disturbance is constantly changing so continuous and precise compensation is needed to allow the highly sensitive accelerometers on board to map the earth’s gravitational field. The extreme control precision provided by the T5 ion thrusters has been likened to compensating for a snow flake landing on the deck of a super tanker.

Alex Popescu, ESA's GOCE mission manager, said: "The data collected by GOCE will be vital for the next generation of geophysical research and will contribute significantly to furthering our understanding of the impact of ocean circulation on the Earth’s climate. Without the precision that is provided by the spacecraft's thrusters the mission would be impossible. Consequently, the final testing of the propulsion system is an important milestone."

Steve Morton, QinetiQ's GOCE project leader, welcomed the impending delivery of the thruster assemblies, saying: "QinetiQ's ion thrusters will play a key role in the success of GOCE as the thrust accuracy requirements of the mission demand a lot of the spacecraft's propulsion system. We have needed to push the boundaries of current knowledge and technology and are proud to be so centrally involved in this important mission."

In addition to the precision provided by the T5 thrusters, the ion engines are also exceptionally mass efficient, requiring only 40 kilogrammes of propellant for the entire 20 month duration of the mission. This is achieved by ejecting xenon gas propellant out of the thrusters at a velocity in excess of 40 thousand metres per second, which is at least 10 times faster than any other conventional rocket thruster employing volatile chemicals, such as those used on the Space Shuttle.

In addition to providing the T5 thrusters, QinetiQ has produced control software and algorithms for the GOCE propulsion system. QinetiQ is also supporting the testing of the complete propulsion sub-system, the Ion Propulsion Assembly (IPA), of which the ITA is a key component and for which Astrium has overall responsibility.

QinetiQ is currently working with partners to qualify its T6 thruster, an even more advanced electric propulsion system aimed at enabling deep space missions and capable of extending the operational life of the next generation of commercial communications satellites.

About GOCE

The GOCE (Gravity Field and Steady-State Ocean Circulation Explorer) mission is dedicated to measuring the Earth’s gravity field and modelling the planet's geoid, essentially a gravitational contour map, with extremely high accuracy and spatial resolution. It is the first Earth Explorer Core mission to be developed as part of ESA’s Living Planet Programme and is scheduled for launch in 2007.

A precise model of the Earth’s geoid is crucial for deriving accurate measurements of ocean circulation, sea-level change and terrestrial ice dynamics – all of which are affected by climate change. The geoid is also used as a reference surface from which to map all topographical features on the planet.

An improved knowledge of gravity anomalies will contribute to a better understanding of the Earth’s interior, such as the physics and dynamics associated with volcanism and earthquakes and also further our knowledge of land uplift due to post-glacial rebound.

Ben White | alfa
Further information:
http://www.QinetiQ.com

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>