Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

European gravity mission to benefit from ion thruster precision

12.01.2007
Final testing of the ion thrusters that will enable a European space mission to measure and map the Earth's gravity field in far greater detail than ever previously achieved has been completed.

QinetiQ's T5 ion thrusters will provide high precision drag compensation for the European Space Agency (ESA) GOCE spacecraft, due for launch later this year. The data captured by GOCE will contribute significantly to our understanding of the Earth's structure, climate and the impacts of climate change.

QinetiQ was awarded a £4.6 million contract by Astrium, ESA's prime contractor for the GOCE platform, in 2001 to provide the two Ion Thruster Assemblies (ITAs) for the spacecraft. By using QinetiQ's T5 ion thruster the spacecraft will be able to compensate for the drag experienced in orbit, thereby allowing highly accurate measurements of the Earth's gravity field.

Travelling at 8 kilometres per second and operating at an orbital altitude of 240 kilometres, the spacecraft will experience a small but significant disturbance in its motion from atmospheric drag. This disturbance is constantly changing so continuous and precise compensation is needed to allow the highly sensitive accelerometers on board to map the earth’s gravitational field. The extreme control precision provided by the T5 ion thrusters has been likened to compensating for a snow flake landing on the deck of a super tanker.

Alex Popescu, ESA's GOCE mission manager, said: "The data collected by GOCE will be vital for the next generation of geophysical research and will contribute significantly to furthering our understanding of the impact of ocean circulation on the Earth’s climate. Without the precision that is provided by the spacecraft's thrusters the mission would be impossible. Consequently, the final testing of the propulsion system is an important milestone."

Steve Morton, QinetiQ's GOCE project leader, welcomed the impending delivery of the thruster assemblies, saying: "QinetiQ's ion thrusters will play a key role in the success of GOCE as the thrust accuracy requirements of the mission demand a lot of the spacecraft's propulsion system. We have needed to push the boundaries of current knowledge and technology and are proud to be so centrally involved in this important mission."

In addition to the precision provided by the T5 thrusters, the ion engines are also exceptionally mass efficient, requiring only 40 kilogrammes of propellant for the entire 20 month duration of the mission. This is achieved by ejecting xenon gas propellant out of the thrusters at a velocity in excess of 40 thousand metres per second, which is at least 10 times faster than any other conventional rocket thruster employing volatile chemicals, such as those used on the Space Shuttle.

In addition to providing the T5 thrusters, QinetiQ has produced control software and algorithms for the GOCE propulsion system. QinetiQ is also supporting the testing of the complete propulsion sub-system, the Ion Propulsion Assembly (IPA), of which the ITA is a key component and for which Astrium has overall responsibility.

QinetiQ is currently working with partners to qualify its T6 thruster, an even more advanced electric propulsion system aimed at enabling deep space missions and capable of extending the operational life of the next generation of commercial communications satellites.

About GOCE

The GOCE (Gravity Field and Steady-State Ocean Circulation Explorer) mission is dedicated to measuring the Earth’s gravity field and modelling the planet's geoid, essentially a gravitational contour map, with extremely high accuracy and spatial resolution. It is the first Earth Explorer Core mission to be developed as part of ESA’s Living Planet Programme and is scheduled for launch in 2007.

A precise model of the Earth’s geoid is crucial for deriving accurate measurements of ocean circulation, sea-level change and terrestrial ice dynamics – all of which are affected by climate change. The geoid is also used as a reference surface from which to map all topographical features on the planet.

An improved knowledge of gravity anomalies will contribute to a better understanding of the Earth’s interior, such as the physics and dynamics associated with volcanism and earthquakes and also further our knowledge of land uplift due to post-glacial rebound.

Ben White | alfa
Further information:
http://www.QinetiQ.com

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>