Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A star's death comes to light

11.01.2007
Using NASA's Chandra X-ray Observatory, scientists have created a stunning new image of one of the youngest supernova remnants in the galaxy.

This new view of the debris of an exploded star helps astronomers solve a long-standing mystery, with implications for understanding how a star's life can end catastrophically and for gauging the expansion of the universe.

Over 400 years ago, sky watchers -- including the famous astronomer Johannes Kepler -- noticed a bright new object in the night sky. Since the telescope had not yet been invented, only the unaided eye could be used to watch as a new star that was initially brighter than Jupiter dimmed over the following weeks.

Chandra's latest image marks a new phase in understanding the object now known as Kepler's supernova remnant. By combining nearly nine days of Chandra observations, astronomers have generated an X-ray image with unprecedented detail of one of the brightest recorded supernovas in the Milky Way galaxy.

The explosion of the star that created the Kepler remnant blasted the stellar remains into space, heating the gases to millions of degrees and generating highly energized particles. Copious X-ray light, like that shining from many supernova remnants, was produced.

Astronomers have studied Kepler intensively over the past three decades with radio, optical and X-ray telescopes, but its origin has remained a puzzle. On the one hand, the presence of large amounts of iron and the absence of a detectable neutron star points toward a so-called Type Ia supernova. These events occur when a white dwarf star pulls material from an orbiting companion until the white dwarf becomes unstable and is destroyed by a thermonuclear explosion.

On the other hand, when viewed in optical light, the supernova remnant appears to be expanding into dense material that is rich in nitrogen. This would suggest Kepler belongs to a different type of supernova (known as "Type II") that is created from the collapse of a single massive star that sheds material before exploding. Type Ia supernovas do not normally have such surroundings.

A team of astronomers, led by Stephen Reynolds of North Carolina State University in Raleigh, N.C., was able to use the Chandra dataset to address this mystery. By comparing the relative amounts of oxygen and iron atoms in the supernova, the scientists were able to determine that Kepler resulted from a Type Ia supernova.

In solving the mystery of Kepler's identity, Reynolds and his team have also given an explanation for the dense material in the remnant. Kepler could be the nearest example of a relatively rare "prompt" Type Ia explosion, which occur in more massive progenitors only about 100 million years after the star formed rather than several billion years. If that is the case, Kepler could teach astronomers more about all Type Ia supernovas and the ways in which prompt explosions from massive stars differ from their more common cousins associated with lower mass stars. This information is essential to improve the reliability of the use of Type Ia stars as "standard candles" for cosmological studies of dark energy as well as to understand their role as the source of most of the iron in the universe.

In the new Chandra Kepler image, red represents low-energy X-rays and shows material around the star -- dominated by oxygen -- that has been heated up by a blast wave from the star's explosion. The yellow color shows slightly higher energy X-rays, mostly iron formed in the supernova, while green (medium-energy X-rays) shows other elements from the exploded star. The blue color represents the highest energy X-rays and shows a shock front generated by the explosion.

Megan Watzke | EurekAlert!
Further information:
http://www.cfa.harvard.edu

More articles from Physics and Astronomy:

nachricht Abrupt motion sharpens x-ray pulses
28.07.2017 | Max-Planck-Institut für Kernphysik

nachricht Physicists Design Ultrafocused Pulses
27.07.2017 | Universität Innsbruck

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

New 3-D imaging reveals how human cell nucleus organizes DNA and chromatin of its genome

28.07.2017 | Health and Medicine

Heavy metals in water meet their match

28.07.2017 | Power and Electrical Engineering

Oestrogen regulates pathological changes of bones via bone lining cells

28.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>