Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Superstrings could add gravitational cacophony to universe's chorus

10.01.2007
Albert Einstein theorized long ago that moving matter would warp the fabric of four-dimensional space-time, sending out ripples of gravity called gravitational waves.

No one has observed such a phenomenon so far, but University of Washington researchers believe it is possible to detect such waves coming from strange wispy structures called cosmic superstrings.

Many physicists consider a complex and sometimes-controversial premise called string theory to be a leading candidate to unify their understanding of the four basic forces of nature – gravity, electromagnetic, weak and strong. String theory is sometimes criticized for being untestable or even unscientific, but some versions now predict an exotic behavior with observable effects: the formation of cosmic superstrings, narrow tubes of energy left from the beginning of the universe that have been stretched to enormous lengths by the expansion of the universe, said UW cosmologist Craig Hogan.

If the theories are correct, there are countless cosmic superstrings stretched like a galactic-sized rubber band. They resemble ultra-thin tubes with some of the vacuum of the early universe preserved inside, Hogan said. The strings can form into loops that "flop around" and emit gravitational waves as they decay and eventually disappear.

"They're so light that they can't have any effect on cosmic structure, but they create this bath of gravitational waves just by decaying," he said.

Theory holds that every time something moves it emits a gravitational wave. Colliding black holes send out more waves than anything else, typically a million times more power than is produced by all the galaxies in the universe. While some gravitational waves could occur at frequencies high enough that a human theoretically could hear them, many more of the sources have very low frequencies, 10 to 20 octaves below the range of human hearing, Hogan said.

"Big masses tend to take a long time to move about, so there are more sources at lower frequencies," he said. "Sensing these vibrations would add the soundtrack to the beautiful imagery of astronomy that we are used to seeing. All this time, we have been watching a silent movie."

A proposed orbiting observatory called the Laser Interferometer Space Antenna, being developed by the National Aeronautics and Space Administration, could provide the first measurements of very low frequency gravitational waves, perhaps the first such measurements at any frequency, Hogan said. In addition to the expected wave sources, such as binary stars and black holes, these signals also might include the first direct evidence of cosmic superstrings.

"If we see some of this background, we will have real physical evidence that these strings exist," he said.

Calculations for gravitational waves generated by cosmic strings, as well as the larger rationale for the space antenna mission, are being presented today at the American Astronomical Society national meeting in Seattle in a poster by Hogan and Matt DePies, a UW physics doctoral student and visiting physics lecturer.

An Earth-based project called the Laser Interferometer Gravitational-Wave Observatory also is attempting to observe gravitational waves, but it is searching in higher frequencies where Hogan believes waves from superstrings would be much harder to detect. That's because the background noise would make it difficult to identify the waves emitted by strings.

"The strings, if they exist, are part of that noise, but we want to listen in at lower frequencies and try to detect them," he said.

Vince Stricherz | EurekAlert!
Further information:
http://www.washington.edu

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>