Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Superstrings could add gravitational cacophony to universe's chorus

Albert Einstein theorized long ago that moving matter would warp the fabric of four-dimensional space-time, sending out ripples of gravity called gravitational waves.

No one has observed such a phenomenon so far, but University of Washington researchers believe it is possible to detect such waves coming from strange wispy structures called cosmic superstrings.

Many physicists consider a complex and sometimes-controversial premise called string theory to be a leading candidate to unify their understanding of the four basic forces of nature – gravity, electromagnetic, weak and strong. String theory is sometimes criticized for being untestable or even unscientific, but some versions now predict an exotic behavior with observable effects: the formation of cosmic superstrings, narrow tubes of energy left from the beginning of the universe that have been stretched to enormous lengths by the expansion of the universe, said UW cosmologist Craig Hogan.

If the theories are correct, there are countless cosmic superstrings stretched like a galactic-sized rubber band. They resemble ultra-thin tubes with some of the vacuum of the early universe preserved inside, Hogan said. The strings can form into loops that "flop around" and emit gravitational waves as they decay and eventually disappear.

"They're so light that they can't have any effect on cosmic structure, but they create this bath of gravitational waves just by decaying," he said.

Theory holds that every time something moves it emits a gravitational wave. Colliding black holes send out more waves than anything else, typically a million times more power than is produced by all the galaxies in the universe. While some gravitational waves could occur at frequencies high enough that a human theoretically could hear them, many more of the sources have very low frequencies, 10 to 20 octaves below the range of human hearing, Hogan said.

"Big masses tend to take a long time to move about, so there are more sources at lower frequencies," he said. "Sensing these vibrations would add the soundtrack to the beautiful imagery of astronomy that we are used to seeing. All this time, we have been watching a silent movie."

A proposed orbiting observatory called the Laser Interferometer Space Antenna, being developed by the National Aeronautics and Space Administration, could provide the first measurements of very low frequency gravitational waves, perhaps the first such measurements at any frequency, Hogan said. In addition to the expected wave sources, such as binary stars and black holes, these signals also might include the first direct evidence of cosmic superstrings.

"If we see some of this background, we will have real physical evidence that these strings exist," he said.

Calculations for gravitational waves generated by cosmic strings, as well as the larger rationale for the space antenna mission, are being presented today at the American Astronomical Society national meeting in Seattle in a poster by Hogan and Matt DePies, a UW physics doctoral student and visiting physics lecturer.

An Earth-based project called the Laser Interferometer Gravitational-Wave Observatory also is attempting to observe gravitational waves, but it is searching in higher frequencies where Hogan believes waves from superstrings would be much harder to detect. That's because the background noise would make it difficult to identify the waves emitted by strings.

"The strings, if they exist, are part of that noise, but we want to listen in at lower frequencies and try to detect them," he said.

Vince Stricherz | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>