Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CDF precision measurement of W-boson mass suggests a lighter Higgs particle

10.01.2007
Scientists from around the World, including the UK, participating in the CDF (Collider Detector at Fermilab) collaboration at the Fermi National Accelerator Laboratory in Illinois announced today (8 January, 2007) the world’s most precise measurement by a single experiment of the mass of the W boson, the carrier of the weak nuclear force and a key parameter of the Standard Model of particles and forces.

The new W-mass value leads to an estimate for the mass of the yet-undiscovered Higgs boson that is lighter than previously predicted, in principle making observation of this elusive particle more likely by experiments at the Tevatron particle collider at Fermilab.

Commenting on this finding CDF collaborator Dr Mark Lancaster from University College London said, “This result is very encouraging for Higgs hunters at the Tevatron and the Large Hadron Collider (LHC). It confirms the Higgs is light and now we have to find it. After more than 10 years we are now honing in on the Higgs. Further data from the Tevatron or new data from the LHC in the next 2-3 years should be enough to finally confirm or rule out the existence of the mythical Higgs particle once and for all.”

Scientists working at the Collider Detector at Fermilab measured the mass of the W boson to be 80,413 +/- 48 MeV/c^2, determining the particle’s mass with a precision of 0.06 percent. Calculations based on the Standard Model intricately link the masses of the W boson and the top quark, a particle discovered at Fermilab in 1995, to the mass of the Higgs boson. By measuring the W-boson and top-quark masses with ever greater precision, physicists can restrict the allowable mass range of the Higgs boson, the missing keystone of the Standard Model.

“This new precision determination of the W boson mass by CDF is one of the most challenging and most important measurements from the Tevatron,” said Associate Director for High Energy Physics at DOE’s Office of Science Dr. Robin Staffin. “Together, the W-boson and top-quark masses allow us to triangulate the location of the elusive Higgs boson.”

The CDF result is now the most precise single measurement to date of the W boson mass. Combining the CDF result with other measurements worldwide leads to an average value of the W-boson mass of 80,398 +/- 25 MeV/c^2.

Prior to the announcement of the CDF result, ALEPH, an experiment at CERN, the European Center for Nuclear Research, held the record for the most precise W mass measurement. ALEPH and its three sister experiments at CERN, which operated until 2001, made significant contributions to the measurement of the W’s mass. The experiments relied on electron-positron collisions produced by the LEP collider at CERN. In contrast, CDF experimenters are analyzing proton-antiproton collisions produced by Fermilab’s Tevatron, the world’s most powerful particle collider.

“Compared to the electron-positron collisions at LEP, the proton-antiproton collisions at the Tevatron result in a ‘dirty’ environment experimentally,” said Jacobo Konigsberg, University of Florida physicist and CDF co-spokesperson. “Every collision produces hundreds of particles along with the W boson that need to be properly accounted for. That’s why our analysis is so challenging.”

Now, having gained a much better understanding of their detector and the processes it records, CDF scientists are optimistic that they can further improve the precision of their W-mass result by a factor of two in the next couple of years.

“You have to sweat every detail of the analysis,” said Fermilab physicist and co-spokesperson Robert Roser. “Our scientists cannot take anything for granted in an environment in which composite particles such as protons and antiprotons collide. We need to understand the many different subatomic processes and take into account the capabilities of our detector for identifying the various particles.”

In a talk at Fermilab on Friday, January 5, Ashutosh Kotwal, CDF collaborator and Professor of Physics at Duke University, presented the W-mass result to the scientific community. The result will be submitted in a paper to Physical Review Letters.

This W mass measurement is yet another major result of Tevatron Run II announced by scientists in the last year, indicating the progress that experimenters have made with both the CDF and the DZero experiments at Fermilab. As the two collaborations continue to take data, collaborators press the search for the Higgs boson as well as for signs of dark matter particles and extra dimensions.

"The CDF and DZero experiments have much more data to analyze, and they are observing more and more collisions at a faster and faster rate,” said Fermilab Director Pier Oddone. “Our experimenters are now in a position to look for some of the rarest and most amazing phenomena that theorists have predicted, as well as to find the completely unexpected. This is a very exciting time."

Gill Ormrod | alfa
Further information:
http://www.pparc.ac.uk

More articles from Physics and Astronomy:

nachricht Exploring the mysteries of supercooled water
01.03.2017 | American Institute of Physics

nachricht Optical generation of ultrasound via photoacoustic effect
01.03.2017 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

A better way to measure the stiffness of cancer cells

01.03.2017 | Health and Medicine

Exploring the mysteries of supercooled water

01.03.2017 | Physics and Astronomy

Research team of the HAW Hamburg reanimated ancestral microbe from the depth of the earth

01.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>