Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ORNL team discovers new way to spin up pulsars

09.01.2007
A team of scientists using Oak Ridge National Laboratory supercomputers has discovered the first plausible explanation for a pulsar's spin that fits the observations made by astronomers.

Anthony Mezzacappa of the Department of Energy lab's Physics Division and John Blondin of North Carolina State University explain their results in the Jan. 4 issue of the journal Nature. According to three-dimensional simulations they performed at the Leadership Computing Facility, located at ORNL, the spin of a pulsar is determined not by the spin of the original star, but by the shock wave created when the star's massive iron core collapses.

That shock wave is inherently unstable, a discovery the team made in 2002, and eventually becomes cigar-shaped instead of spherical. The instability creates two rotating flows—one in one direction directly below the shock wave and another, inner flow, that travels in the opposite direction and spins up the core.

"The stuff that's falling in toward the center, if it hits this shock wave that is not a sphere any more but a cigar-shaped surface, will be deflected," Mezzacappa said. "When you do this in 3-D, you find that you wind up with not only one flow, but two counterrotating flows."

The asymmetrical flows establish a "sloshing" motion that, in the complex 3-D models, accounts for the pulsars observed spin velocities from once every 15 to 300 milliseconds, which is much slower than previous models predicted.

Previously, astronomers did not have a workable explanation for how the pulsar gets its spin. The assumption to this point has been that the spin of the leftover collapsed core comes from the spin of the original star. Being much smaller, the pulsar would then spin much faster than the original star, just as a figure skater spins faster by pulling his or her arms in.

The problem with that approach is that it would explain only the fastest observed pulsars. The ORNL-NCSU team, on the other hand, predicts spin periods that are in the observed range between 15 and 300 milliseconds.

The work was funded under the DOE Office of Science's Scientific Discovery through Advanced Computing, or SciDAC, program.

"Our discovery came at a critical time," Mezzacappa noted. "It came at a time when there was no description in the literature of how neutron stars are spun up and, therefore, how pulsars are born, that are consistent with observation. It was a crisis, if you will. Now our simulations come along and provide a way around that conundrum."

The discovery is an outgrowth of the team's use of three-dimensional simulations and the advances in high-performance computing that made the simulations possible. The simulations performed for the Nature paper used the Cray X1E system at ORNL, known as Phoenix. That system boasts a peak performance of more than 18 teraflops and is currently the fastest vector computer in the United States. Later simulations done by the team made use of the center's Jaguar system, a Cray XT3 with a peak performance of more than 50 teraflops.

The team used the VH1 code, developed by Blondin when he was a postdoctoral research associate at the University of Virginia, and moving the simulation data was problematic. Mezzacappa noted that researchers are able now to perform visualizations remotely, without having to move the data off site, but at the time of their early three-dimensional simulations this capability was not in place.

He stressed also that the team is looking forward to further advances in high-performance computing that will be coming to ORNL. For example, the team's simulations have not incorporated the influence of nearly massless, radiation-like particles known as neutrinos and the star's magnetic field.

The real prize, though, for his and other teams is a complete explanation of how the collapse of a star's core leads to the explosion that ejects most of its layers. So far, that explanation has proved elusive.

"In a nutshell, this rapid advance in supercomputing technology will give us the tools to solve this problem and to make these important predictions and to understand these events and their role in our universe. This is a very, very exciting and very satisfying thing," Mezzacappa said.

Oak Ridge National Laboratory is managed by UT-Battelle for the Department of Energy.

Mike Bradley | EurekAlert!
Further information:
http://www.ornl.gov

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>