Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Exploding star strafed Earth

12.02.2002


A supernova is the death throes of a large star
© NASA


A supernova may have caused mass extinction two million years ago.

The explosion of a dying star could have ended much of marine life on Earth two million years ago. The supernova could have strafed the Earth’s atmosphere with cosmic rays, severely damaging the ozone layer and exposing living organisms to high levels of the Sun’s hazardous ultraviolet rays, US researchers propose1.

This idea dates back to the 1950s, but now Narciso Benítez of Johns Hopkins University in Baltimore, Maryland, and colleagues have come up with the first plausible evidence. Their proposal remains tentative, but is consistent with what is known about the likelihood of nearby stellar explosions and the telltale signatures of these events on our planet.



Supernovae are the death throes of large stars. When such stars run out of fuel for nuclear fission, they collapse under their own gravity, heat up rapidly and explode, releasing huge amounts of matter and energy. Fortunately for us, such outbursts are rare: the most recent one in our own galaxy was spotted in 1604, and was too far away to pose any risk. Several supernovae have been observed more recently in other galaxies.

One-fifth of all supernovae occur in large groups of relatively young stars that are thought to have coalesced from the same gas cloud. One such cluster in our own galaxy is the Scorpius-Centaurus association, which comprises three subgroups of stars.

Each subgroup would have generated supernovae at different times: about 10, 7 and 2 million years ago, say Benítez’ group. The most recent episode could have included a supernova as little as 130 light years from Earth. This is not close enough to fry our planet. But it would have left a mark that the researchers think has already been found.

Three years ago, scientists in Germany reported high concentrations of iron-60 in two layers of ocean rock, dated at about 0-3 and 4-6 million years old2. Iron-60 is a rare form produced on Earth by nuclear reactions involving cosmic rays, such as those that supernovae generate.

Putting these arguments together, Benítez’ team proposes that the most recently formed iron-60 layer could be the result of a nearby supernova in the Scorpius-Centaurus association around two million years ago. The supernova could have left another signature - in the fossil record.

Two million years ago, many marine creatures, such as bivalve molluscs, died out suddenly all over the planet. As mass extinctions go, this was a mild one. But no one knows what caused it.

Benítez and his colleagues think that a nearby supernova at this time could have showered the Earth with cosmic rays. These charged subatomic particles collide with atoms in the air, initiating chemical reactions. Copious cosmic rays are thought to produce nitrogen monoxide, which can destroy ozone molecules.

The researchers calculate that a supernova 130 light years away could have thinned the ozone layer by up to 60 per cent, exposing marine organisms to ultraviolet rays from the Sun. This could have killed off plankton, and thence the molluscs that live off them.

To support this hypothesis, astronomers now need to find the smoking gun: remnants of ancient supernovae in nearby star clusters.

References
  1. Benítez, N., Maíz-Apellániz, J. & Canelles, M. Evidence for nearby supernova explosions. Physical Review Letters, 83, 081101, (2002).
  2. Knie, K. et al., Indication for supernova produced 60Fe activity on Earth. Physical Review Letters, 83, 18 - 21, (1999).


PHILIP BALL | © Nature News Service

More articles from Physics and Astronomy:

nachricht Neutron star merger directly observed for the first time
17.10.2017 | University of Maryland

nachricht Breaking: the first light from two neutron stars merging
17.10.2017 | American Association for the Advancement of Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Plant escape from waterlogging

17.10.2017 | Life Sciences

Study suggests oysters offer hot spot for reducing nutrient pollution

17.10.2017 | Life Sciences

Breaking: the first light from two neutron stars merging

17.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>