Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New stars shed light on the past

09.01.2007
A new image from the Hubble Space Telescope shows N90, one of the star-forming regions in the Small Magellanic Cloud. The rich populations of infant stars found here enable astronomers to examine star forming processes in an environment that is very different from that in our own Milky Way.

This new image taken with the Advanced Camera for Surveys onboard the NASA/ESA Hubble Space Telescope depicts bright blue newly formed stars that are blowing a cavity in the centre of a fascinating star-forming region known as N90.


This image depicts bright blue newly formed stars that are blowing a cavity in the centre of a fascinating star-forming region known as N90. The high energy radiation blazing out from the hot young stars in N90 is eroding the outer portions of the nebula from the inside, as the diffuse outer reaches of the nebula prevent the energetic outflows from streaming away from the cluster directly. Because N90 is located far from the central body of the Small Magellanic Cloud, numerous background galaxies in this picture can be seen, delivering a grand backdrop for the stellar newcomers. The dust in the region gives these distant galaxies a reddish-brown tint. Credit: NASA, ESA and the Hubble Heritage Team (STScI/AURA)-ESA/Hubble Collaboration

N90 is located in the wing of the Small Magellanic Cloud, in the constellation of Tucana, approximately 200,000 light-years away from the Earth. Its proximity makes it an exceptional laboratory to perform in-depth studies of star formation processes and their evolution in an environment close to that in the early Universe. Dwarf galaxies such as the Small Magellanic Cloud, with small numbers of stars compared to our own Milky Way, are considered to be the primitive building blocks of larger galaxies. The study of star formation within this dwarf galaxy is particularly interesting to astronomers because its primitive nature means that it lacks a large percentage of the heavier elements that are forged in successive generations of stars through nuclear fusion.

The high energy radiation blazing out from the hot young stars in N90 is eroding the outer portions of the nebula from the inside, as the diffuse outer reaches of the nebula prevent the energetic outflows from streaming away from the cluster directly. Because N90 is located far from the central body of the Small Magellanic Cloud, numerous background galaxies in this picture can be seen, delivering a grand backdrop for the stellar newcomers. The dust in the region gives these distant galaxies a reddish-brown tint.

Hubble has often been used to observe star birth regions, but they are rarely as stunning and fascinating as N90. At the heart of N90 lies NGC 602, a relatively isolated star cluster whose environment is a close analogue to what existed in the early Universe. The existence of dark clouds of dense dust and the cluster being rich in ionized gas suggest the presence of ongoing star formation processes.

Ridges of dust and gaseous filaments are seen towards north-west (in the upper left part of the image) and towards south-east (in the lower right hand corner). Magnificent elephant trunk-like dust pillars point towards the hot blue stars and are tell-tale signs of their eroding effect.

An international team of astronomers, led by Antonella Nota of the European Space Agency and the Space Telescope Science Institute in the US, has discovered a population of small newborn stars scattered across the picture. Observable around the bright blue stars at the centre of the image, these stars have caught astronomers’ attention because they are still forming from gravitationally collapsing gas clouds. Furthermore, they have not yet contracted to the point where their cores are hot enough to begin converting hydrogen into helium.

In this region it is possible with Hubble to trace how the star formation started at the centre of the cluster and propagated outwards, with the youngest stars still forming today along the dust ridges.

This image was presented by Lynn Redding Carlson, Johns Hopkins University, at the 2007 January meeting of the American Astronomical Society in Seattle.

Lars Christensen | alfa
Further information:
http://www.spacetelescope.org/news/html/heic0702.html

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>