Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Cheaper LEDs from breakthrough in zinc oxide (ZnO) nanowire research

Engineers at UC San Diego have synthesized a long-sought semiconducting material that may pave the way for an inexpensive new kind of light emitting diode (LED) that could compete with today's widely used gallium nitride LEDs, according to a new paper in the journal Nano Letters.

To build an LED, you need both positively and negatively charged semiconducting materials; and the engineers synthesized zinc oxide (ZnO) nanoscale cylinders that transport positive charges or "holes" – so-called "p-type ZnO nanowires." They are endowed with a supply of positive charge carrying holes that, for years, have been the missing ingredients that prevented engineers from building LEDs from ZnO nanowires. In contrast, making "n-type" ZnO nanowires that carrier negative charges (electrons) has not been a problem. In an LED, when an electron meets a hole, it falls into a lower energy level and releases energy in the form of a photon of light.

Deli Wang, an electrical and computer engineering professor from UCSD's Jacobs School of Engineering, and colleagues at UCSD and Peking University, report synthesis of high quality p-type zinc oxide nanowires in a paper published online by the journal Nano Letters.

"Zinc oxide nanostructures are incredibly well studied because they are so easy to make. Now that we have p-type zinc oxide nanowires, the opportunities for LEDs and beyond are endless," said Wang.

Wang has filed a provisional patent for p-type ZnO nanowires and his lab at UCSD is currently working on a variety of nanoscale applications.

"Zinc oxide is a very good light emitter. Electrically driven zinc oxide single nanowire lasers could serve as high efficiency nanoscale light sources for optical data storage, imaging, and biological and chemical sensing," said Wang.

To make the p-type ZnO nanowires, the engineers doped ZnO crystals with phosphorus using a simple chemical vapor deposition technique that is less expensive than the metal organic chemical vapor deposition (MOCVD) technique often used to synthesize the building blocks of gallium nitride LEDs. Adding phosphorus atoms to the ZnO crystal structure leads to p-type semiconducting materials through the formation of a defect complex that increases the number of holes relative to the number of free electrons.

"Zinc oxide is wide band gap semiconductor and generating p-type doping impurities that provide free holes is very difficult – particularly in nanowires. Bin Xiang in my group worked day and night for more than a year to accomplish this goal," said Wang.

The starting materials and manufacturing costs for ZnO LEDs are far less expensive than those for gallium nitride LEDs. In the future, Wang expects to cut costs even further by making p-type and n-type ZnO nanowires from solution.

For years, researchers have been making electron-abundant n-type ZnO nanowire crystals from zinc and oxygen. Missing oxygen atoms within the regular ZnO crystal structure create relative overabundances of zinc atoms and give the semiconductors their n-type, conductive properties. The lack of accompanying p-type ZnO nanowires, however, has prevented development of a wide range of ZnO nanodevices.

While high quality p-type ZnO nanowires have not previously been reported, groups have demonstrated p-type conduction in ZnO thin films and made ZnO thin film LEDs. Using ZnO nanowires rather than thin films to make LEDs would be less expensive and could lead to more efficient LEDs, Wang explained.

Having both n- and p-type ZnO nanowires – complementary nanowires – could also be useful in a variety of applications including transistors, spintronics, UV detectors, nanogenerators, and microscopy. In spintronics applications, researchers could use p-type ZnO nanowires to make dilute magnetic semiconductors by doping ZnO with magnetic atoms, such as manganese and cobalt, Wang explained.

Transistors that rely on the semiconducting properties of ZnO are also now on the horizon. "P-type doping in nanowires would make complementary ZnO nanowire transistors possible," said Wang.

Daniel Kane | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht 'Frequency combs' ID chemicals within the mid-infrared spectral region
16.03.2018 | American Institute of Physics

nachricht Fraunhofer HHI have developed a novel single-polarization Kramers-Kronig receiver scheme
16.03.2018 | Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut, HHI

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>