Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Two cosmic bursts upset tidy association between long gamma-ray bursts and supernovae

22.12.2006
Newfound diversity in gamma-ray bursts puzzles astronomers

Two brilliant flashes of light from nearby galaxies are puzzling astronomers and could indicate that gamma-ray bursts, which signal the birth of a black hole, are more diverse than once thought.

First seen 40 years ago, gamma-ray bursts are the brightest explosions in the universe. They appear to fall into two distinct categories, short and long, depending on whether they shine for less than or more than about two seconds. Observations accumulated over the last decade led to a consensus that the long variety occurred when a massive star at the end of its life collapses to form a black hole. In addition to making a burst of gamma-rays, the explosion also produces a bright supernova. The short ones, not accompanied by a supernova, are thought to herald the merger of two neutron stars or a neutron star and a black hole, resulting in a bigger black hole.

The two new gamma-ray bursts are of the long variety but, surprisingly, did not show any evidence of supernova activity. This flies in the face of what was an emerging consensus about the origin of long bursts, according to University of California, Berkeley's Joshua Bloom, assistant professor of astronomy. To Bloom, this indicates that there are more than two ways to produce a gamma-ray flash and a black hole.

"Instead of simplicity and clarity, we're seeing a rich diversity emerge - there are more ways than we thought for producing flashes of gamma-rays," Bloom said.

Bloom and 30 colleagues from around the world report observations of two of these peculiar gamma-ray bursts, labeled GRB 060505 and GRB 060614, in the Dec. 21 issue of the British journal Nature. Three other papers in the same issue report details of GRB 060614. Both bursts were detected by NASA's Swift satellite - the first on May 5, 2006, the second on June 14, 2006.

Based solely on GRB 060614, many astronomers remained skeptical about the need to cast away the tidy connection of long bursts to supernovae. Yet, as Bloom stated, "It's easy to explain away one of these anomalous events as a fluke, but two strange events give our claim some oomph. These events are observational threats to the one-to-one association between long bursts and supernovae."

The whole story started with a non-discovery. Daniel Perley, a graduate student in astronomy at UC Berkeley, suggested that he and Bloom use the W. M. Keck Telescope in Hawaii to observe an area of sky where the long burst GRB 060505 had been seen in May. That long burst lasted four seconds and was pinpointed inside a galaxy a little over 1 billion light years away, towards the constellation Piscis Austrinus.

Had this flash been associated with the kind of supernova typically seen at sites of long gamma-ray bursts, or even a relatively weak supernova down to 250 times less powerful, Keck would have detected it, but instead Bloom and Perley observed nothing but the parent galaxy.

"We usually learn a lot about an event when new sources are detected, but in this context, it was much more exciting to detect nothing," Perley said.

At around the same time, a Danish group headed by Johan Peter Uldall Fynbo of the Neils Bohr Institute at the University of Copenhagen had had similar lack of success finding a supernova associated with GRB 060614. That burst lasted almost two minutes and was pinpointed near a galaxy 1.6 billion light years away, towards the constellation Indus. In both cases, the presence of obscuring dust was ruled out.

Fynbo gathered data from an international team, including Bloom and Perley, which argued in the Nature paper that the two supernovae together suggest a "new phenomenological type of massive stellar death."

Most astronomers have concluded that some new process must be at play: either the model of mergers creating second-long "short" bursts needs a major overhaul, or the progenitor star from this peculiar explosion is intrinsically different from the kind that make supernovae and long bursts.

"The paradigm had emerged that all long bursts were associated with the death of massive stars," said Bloom, who last year discovered evidence that convincingly linked short-lived gamma-ray bursts to the explosive merger of old, dead stars. The new observations "do not rule out a massive star origin, but does require that supernovae produced in some explosions are either very weak or non-existent."

Swift, launched in November 2004, is a NASA mission managed by NASA Goddard in partnership with the Italian Space Agency and the Particle Physics and Astronomy Research Council of the United Kingdom.

Robert Sanders | EurekAlert!
Further information:
http://www.berkeley.edu

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>