Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Portrait of a Dramatic Stellar Crib

22.12.2006
ESO Releases 256 Million Pixel Image of Immense Stellar Factory

A new, stunning image of the cosmic spider, the Tarantula Nebula and its surroundings, finally pays tribute to this amazing, vast and intricately sculpted web of stars and gas. The newly released image, made with ESO's Wide Field Imager on the 2.2-m ESO/MPG Telescope at La Silla, covers 1 square degree on the sky and could therefore contain four times the full Moon.

Known as the Tarantula Nebula for its spidery appearance, the 30 Doradus complex is a monstrous stellar factory. It is the largest emission nebula in the sky, and can be seen far down in the southern sky at a distance of about 170,000 light-years, in the southern constellation Dorado (The Swordfish or the Goldfish). It is part of one of the Milky Way's neighbouring galaxies, the Large Magellanic Cloud.

The Tarantula Nebula is thought to contain more than half a million times the mass of the Sun in gas and this vast, blazing labyrinth hosts some of the most massive stars known. The nebula owes its name to the arrangement of its brightest patches of nebulosity, that somewhat resemble the legs of a spider. They extend from a central 'body' where a cluster of hot stars (designated 'R136') illuminates and shapes the nebula. This name, of the biggest spiders on the Earth, is also very fitting in view of the gigantic proportions of the celestial nebula - it measures nearly 1,000 light-years across and extends over more than one third of a degree: almost, but not quite, the size of the full Moon. If it were in our own Galaxy, at the distance of another stellar nursery, the Orion Nebula (1,500 light-years away), it would cover one quarter of the sky and even be visible in daylight.

Because astronomers believe that most of the stars in the Universe were formed in large and hectic nurseries such as the 30 Doradus region, its study is fundamental. Early this year, astronomers took a new, wide look at the spider and its web of filaments, using the Wide Field Imager on the 2.2-m MPG/ESO telescope located at La Silla, Chile, while studying the dark clouds in the region. Dark clouds are enormous clouds of gas and dust, with a mass surpassing a million times that of the Sun. They are very cold, with temperatures about -260 degrees Celsius, and are difficult to study because of the heavy walls of dust behind which they hide. Their study is however essential, as it is in their freezing wombs that stars are born.

Observing in four different bands, the astronomers made a mosaic of the half-degree field of view of the instrument to obtain an image covering one square degree. With each individual image containing 64 million pixels, the resultant mosaic thus contained 4 times as many, or 256 million pixels! The observations were made in very good image quality, the 'seeing' being typically below 1 arcsecond.

The image is based on data collected through four filters, including two narrow-band filters that trace hydrogen (red) and oxygen (green). The predominance of green in the Tarantula is a result of the younger, hotter stars in this region of the complex.

It would be easy to get lost in the meanderings of the filamentary structures or get stuck in the web of the giant arachnid, as is easily experienced with the zoom-in feature provided on the associated photo page, and it is therefore difficult to mention all the unique objects to be discovered. Deserving closer attention perhaps is the area at the right-hand border of the Tarantula. It contains the remains of a star that exploded and was seen with the unaided eye in February 1987, i.e. almost 20 years ago. Supernova SN 1987A, as it is known, is the brightest supernova since the one observed by the German astronomer Kepler in 1604. The supernova is known to be surrounded by a ring, which can be distinguished in the image.

A little to the left of SN 1987A, another distinctive feature is apparent: the Honeycomb Nebula. This characteristic bubble-like structure results apparently from the interaction of a supernova explosion with an existing giant shell, which was itself generated by the combined action of strong winds from young, massive stars and supernova explosions.

Henri Boffin | alfa
Further information:
http://www.eso.org/outreach/press-rel/pr-2006/pr-50-06.html

More articles from Physics and Astronomy:

nachricht Innovative LED High Power Light Source for UV
22.06.2017 | Omicron - Laserage Laserprodukte GmbH

nachricht Spin liquids − back to the roots
22.06.2017 | Universität Augsburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>