Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New type of massive stellar death

21.12.2006
Stars die when they have exhausted the fuel in their centres and until now it has been believed, that stars could only die in two ways – one way for the smaller and medium size stars and one way for the very massive stars.

Our sun is a middle size star. When stars that are smaller than our sun or up to 8 times more massive than the sun die, they expel the outer layers and leave behind a white dwarf in the centre


White dwarf. The Ring Nebula (M57). This is the remains of a star that died by expelling its outer layers about 6000-8000 years ago. In the centre the exposed hot core of the star - a so called white dwarf with a size similar to the earth - can still be seen. The outer layers are moving away from the white dwarf with velocities a few tenths of kilometres per second. All stars with mass less than about 8 times the mass of the sun are expected to die in a similar way. (image of planetary nebula).

Stars with a mass more than 8 times that of our sun die violently in energetic supernova explosions expelling several solar masses of chemically enriched material into the interstellar medium leaving behind either neutron stars or black holes in the centre. In this way the interstellar medium becomes more and more enriched in elements such as Oxygen and Carbon, that are essential for life.

The new discovery

In May and June of this year, two long-duration Gamma-ray bursts (GRBs) were detected by the NASA satellite Swift. GRBs are power-full bursts of gamma-rays coming from far away. There has been a tremendous progress in the study of this during the last 10 years, and it has been found that the long-duration GRBs (these have duration longer than 2 seconds) are caused by the deaths of massive stars.

A team of astrophysics from Dark Cosmology Centre (DARK) at the Niels Bohr Institute, University of Copenhagen monitored the two bursts intensively during June, July, August and September 2006. The remarkable conclusion from this monitoring was that there were no supernovae associated with these two Gamma-ray bursts.

Conclusion of this research

There are two possible conclusions: 1) that these GRBs were not caused by massive stars, or 2) that they were caused by massive stars that did not cause associated supernova explosions. Focusing on the May burst, where the team have the strongest evidence, the team has obtained deep images in very good observing conditions and spectroscopy as well. This allowed the team to localise exactly where in the host galaxy the burst occurred.

The host galaxy turns out to be a small spiral galaxy, and the burst occurred in a compact star-forming region in one of the spiral arms of the galaxy. This is strong evidence that the star(s) that made the GRB were massive, as massive stars due to their short lifetimes (few million years) are only found in star-forming regions.

Some massive stars simply collapse

The implications of this discovery are therefore this: Where as we up till know thought that massive stars died in supernova explosions expelling large materials of enriched material into the interstellar medium, it seems that this is not always the case.

The theoretical idea is that some massive stars simply collapse under the formation of a black hole (either directly as water running out of the sink, or in an indirect way where some material gets expelled, but then "falls" back and forms a black hole). Such stars would return very little chemically enriched material to the interstellar medium. It is difficult to estimate what fraction of massive stars that die in this way, but it is probably small.

Anne Dorte Bach | alfa
Further information:
http://www.astro.ku.dk/dark/

More articles from Physics and Astronomy:

nachricht Further Improvement of Qubit Lifetime for Quantum Computers
09.12.2016 | Forschungszentrum Jülich

nachricht Electron highway inside crystal
09.12.2016 | Julius-Maximilians-Universität Würzburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>