Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New type of massive stellar death

21.12.2006
Stars die when they have exhausted the fuel in their centres and until now it has been believed, that stars could only die in two ways – one way for the smaller and medium size stars and one way for the very massive stars.

Our sun is a middle size star. When stars that are smaller than our sun or up to 8 times more massive than the sun die, they expel the outer layers and leave behind a white dwarf in the centre


White dwarf. The Ring Nebula (M57). This is the remains of a star that died by expelling its outer layers about 6000-8000 years ago. In the centre the exposed hot core of the star - a so called white dwarf with a size similar to the earth - can still be seen. The outer layers are moving away from the white dwarf with velocities a few tenths of kilometres per second. All stars with mass less than about 8 times the mass of the sun are expected to die in a similar way. (image of planetary nebula).

Stars with a mass more than 8 times that of our sun die violently in energetic supernova explosions expelling several solar masses of chemically enriched material into the interstellar medium leaving behind either neutron stars or black holes in the centre. In this way the interstellar medium becomes more and more enriched in elements such as Oxygen and Carbon, that are essential for life.

The new discovery

In May and June of this year, two long-duration Gamma-ray bursts (GRBs) were detected by the NASA satellite Swift. GRBs are power-full bursts of gamma-rays coming from far away. There has been a tremendous progress in the study of this during the last 10 years, and it has been found that the long-duration GRBs (these have duration longer than 2 seconds) are caused by the deaths of massive stars.

A team of astrophysics from Dark Cosmology Centre (DARK) at the Niels Bohr Institute, University of Copenhagen monitored the two bursts intensively during June, July, August and September 2006. The remarkable conclusion from this monitoring was that there were no supernovae associated with these two Gamma-ray bursts.

Conclusion of this research

There are two possible conclusions: 1) that these GRBs were not caused by massive stars, or 2) that they were caused by massive stars that did not cause associated supernova explosions. Focusing on the May burst, where the team have the strongest evidence, the team has obtained deep images in very good observing conditions and spectroscopy as well. This allowed the team to localise exactly where in the host galaxy the burst occurred.

The host galaxy turns out to be a small spiral galaxy, and the burst occurred in a compact star-forming region in one of the spiral arms of the galaxy. This is strong evidence that the star(s) that made the GRB were massive, as massive stars due to their short lifetimes (few million years) are only found in star-forming regions.

Some massive stars simply collapse

The implications of this discovery are therefore this: Where as we up till know thought that massive stars died in supernova explosions expelling large materials of enriched material into the interstellar medium, it seems that this is not always the case.

The theoretical idea is that some massive stars simply collapse under the formation of a black hole (either directly as water running out of the sink, or in an indirect way where some material gets expelled, but then "falls" back and forms a black hole). Such stars would return very little chemically enriched material to the interstellar medium. It is difficult to estimate what fraction of massive stars that die in this way, but it is probably small.

Anne Dorte Bach | alfa
Further information:
http://www.astro.ku.dk/dark/

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>