Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unlocking the frozen secrets of comet Wild 2

20.12.2006
Eleven months ago, NASA’s Stardust mission touched down in the Utah desert with the first solid comet samples ever retrieved from space.

Since then, nearly 200 scientists from around the globe have studied the minuscule grains, looking for clues to the physical and chemical history of our solar system. Although years of work remain to fully decipher the secrets of comet Wild 2, researchers are sure that it contains some of the most primitive and exotic chemical structures ever studied in a laboratory.

Preliminary results appear in a special section of the December 15 issue of Science. Overall, research efforts have focused on answering “big-picture” questions regarding the nature of the comet samples that were returned, including determining mineral structures, chemical composition, and the chemistry of the organic, or carbon-containing, compounds they carry. Carnegie researchers made key contributions to the latter effort. Out of seven papers in total, four involved Carnegie scientists from the Geophysical Laboratory (GL) and the Department of Terrestrial Magnetism (DTM).

“Carnegie enjoys a unique concentration of instrumentation and expertise to be able to engage in cutting-edge questions such as those posed by the Stardust mission,” said GL’s Andrew Steele.

Scientists have believed that comets formed long ago in the cool outer reaches of the solar system and thus largely consist of material that formed at cold temperatures and escaped alteration in the blast furnace of the inner solar nebula—the cloud of hot gases that condensed to form the Sun and terrestrial planets some 4.5 billion years ago.

According to the record contained in the Stardust grains, it appears that this hypothesis is about 90% right. Evidence from the ratios of certain isotopes—variants of atoms that have the same chemical properties, yet differ in weight—suggest that as much as 10% of the comet’s material formed in the hot inner solar nebula and was transported to the cold outer reaches where the comet came together as the Sun formed. Chief among these tell-tale isotopes are those of oxygen, for which the ratios resemble those seen in meteorites known to have formed in the inner solar system.

Yet, isotopic measurements of hydrogen and nitrogen made at DTM and elsewhere tell a different picture. “The presence of excesses of heavier isotopes—deuterium and nitrogen 15, to be specific—is a strong indication that some of the comet dust was around before the Sun formed,” said DTM’s Larry Nittler. “It’s really quite striking.”

The structures of the comet’s organic molecules tell a similar tale. “This comet’s organic material is really quite unusual compared to other extraterrestrial sources we have studied, such as meteorites and interstellar dust particles,” said GL’s George Cody. “Yet there are some important similarities that tell that us we are not dealing with matter that is totally foreign to our solar system.”

The samples contain very few of the stable ringed, or aromatic, carbon structures that are common on Earth and in meteorites. Instead, they have many fragile carbon structures that would most likely not have survived the harsh conditions in the solar nebula. These molecules also contain considerably more oxygen and nitrogen than even the most primordial examples retrieved from meteorites and exist in forms that are new to meteorite studies.

“These forms of carbon don’t look like what we find in meteorites, which is something like compacted soot from your chimney. The carbon compounds from this comet are a much more complicated mix of compounds,” commented GL’s Marc Fries. “It will be an exciting challenge to explain how these compounds formed and wound up in the comet.”

“This leads us to our next big question,” Cody remarked. “How could such fragile material have survived capture at 6 km/sec collision velocity?”

“At this point, every question we answer raises several more questions,” Nittler said. “But that is precisely what makes exploration so exciting and makes sample return so important. We now have the samples to study for many years to come.”

George Cody | EurekAlert!
Further information:
http://www.gl.ciw.edu

More articles from Physics and Astronomy:

nachricht Studying fundamental particles in materials
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Seeing the quantum future... literally
16.01.2017 | University of Sydney

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>