Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NJIT solar physicist says weak sun produces record solar outburst

19.12.2006
A solar outburst, which can play havoc with global positioning systems and cell phone reception, bombarded Earth, Dec. 6, 2006, with a record amount of radio noise, said solar physicist Dale Gary.

Gary, who confirmed the news today, is a professor and chair of the department of physics at New Jersey Institute of Technology (NJIT). "Reports of significant events worldwide are still coming in as late as yesterday afternoon," said Gary. Due to a computer software failure, initial research reports in the U.S. downplayed the outbursts.

"The odd thing about this outburst was that the Sun is supposed to be at the minimum phase of its 11-year cycle," said Gary. "Nevertheless, the disruption lasted more than an hour, produced a record amount of radio noise, and caused massive disruptions of Global Positioning Satellite (GPS) receivers world wide."

Since 1997, Gary has directed Owens Valley Solar Array (OVSA), one of the world's leading research facilities to study the sun's impact upon earth. Using special instruments, Gary and researchers at NJIT's Center for Solar-Terrestial Research study solar outbursts. The National Science Foundation and NASA support the work.

A complex sunspot on the Sun was responsible for the outburst, which occurred Dec. 6, 2006 at 3:45 p.m. EST, said Gary. Before the outburst, the radio output of the Sun in the GPS broadcasting band was 54 on the scale of solar flux units. During the outburst, associated with a large solar flare, the radio noise reached around 1 million solar flux units, according OVSA instruments.

"This reading is more than 10 times the previous record, and calls into question scientists' assumptions of the extent to which the Sun can interfere with GPS and wireless communications," Gary said. "OVSA's results are especially useful because they monitor the same right-hand circular polarization that the GPS satellites use for broad-casts. Most other radio instruments measure total intensity rather than circular polarization, which undercounts the noise effect on GPS signals."

The recognition of the record-setting nature of the burst was delayed because the US Air Force Radio Solar Telescope Network (RSTN) reported lower numbers--13,000 solar flux units. But after OVSA researchers triple-checked their figures, it appeared that NJIT's group was correct. Cornell University researchers later independently confirmed OVSA findings.

"The Cornell researchers gave us indirect evidence of a burst at least 10 times the strength reported by RSTN," said Gary. "Eventually we learned," he added, "that the RSTN report pertained only to the beginning of the burst, and the recording was stopped early due to a software error. At the same time, additional quantitative reports of effects on GPS receivers also point to a burst up to 1 million solar flux units."

"When colleagues elsewhere, learned of the burst and saw the OVSA numbers, they just said, ‘Wow,'" said Gary. Gary expects to see more important results emerge from the data. "Early examination of the data taken during the burst, ought to provide a gold-mine of scientific information about how the Sun produces such amazing events," Gary said. "Ultimately we hope to understand these bursts well enough to predict them and their effect on wireless systems on Earth."

Sheryl Weinstein | EurekAlert!
Further information:
http://www.njit.edu

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>