Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NJIT solar physicist says weak sun produces record solar outburst

19.12.2006
A solar outburst, which can play havoc with global positioning systems and cell phone reception, bombarded Earth, Dec. 6, 2006, with a record amount of radio noise, said solar physicist Dale Gary.

Gary, who confirmed the news today, is a professor and chair of the department of physics at New Jersey Institute of Technology (NJIT). "Reports of significant events worldwide are still coming in as late as yesterday afternoon," said Gary. Due to a computer software failure, initial research reports in the U.S. downplayed the outbursts.

"The odd thing about this outburst was that the Sun is supposed to be at the minimum phase of its 11-year cycle," said Gary. "Nevertheless, the disruption lasted more than an hour, produced a record amount of radio noise, and caused massive disruptions of Global Positioning Satellite (GPS) receivers world wide."

Since 1997, Gary has directed Owens Valley Solar Array (OVSA), one of the world's leading research facilities to study the sun's impact upon earth. Using special instruments, Gary and researchers at NJIT's Center for Solar-Terrestial Research study solar outbursts. The National Science Foundation and NASA support the work.

A complex sunspot on the Sun was responsible for the outburst, which occurred Dec. 6, 2006 at 3:45 p.m. EST, said Gary. Before the outburst, the radio output of the Sun in the GPS broadcasting band was 54 on the scale of solar flux units. During the outburst, associated with a large solar flare, the radio noise reached around 1 million solar flux units, according OVSA instruments.

"This reading is more than 10 times the previous record, and calls into question scientists' assumptions of the extent to which the Sun can interfere with GPS and wireless communications," Gary said. "OVSA's results are especially useful because they monitor the same right-hand circular polarization that the GPS satellites use for broad-casts. Most other radio instruments measure total intensity rather than circular polarization, which undercounts the noise effect on GPS signals."

The recognition of the record-setting nature of the burst was delayed because the US Air Force Radio Solar Telescope Network (RSTN) reported lower numbers--13,000 solar flux units. But after OVSA researchers triple-checked their figures, it appeared that NJIT's group was correct. Cornell University researchers later independently confirmed OVSA findings.

"The Cornell researchers gave us indirect evidence of a burst at least 10 times the strength reported by RSTN," said Gary. "Eventually we learned," he added, "that the RSTN report pertained only to the beginning of the burst, and the recording was stopped early due to a software error. At the same time, additional quantitative reports of effects on GPS receivers also point to a burst up to 1 million solar flux units."

"When colleagues elsewhere, learned of the burst and saw the OVSA numbers, they just said, ‘Wow,'" said Gary. Gary expects to see more important results emerge from the data. "Early examination of the data taken during the burst, ought to provide a gold-mine of scientific information about how the Sun produces such amazing events," Gary said. "Ultimately we hope to understand these bursts well enough to predict them and their effect on wireless systems on Earth."

Sheryl Weinstein | EurekAlert!
Further information:
http://www.njit.edu

More articles from Physics and Astronomy:

nachricht Further Improvement of Qubit Lifetime for Quantum Computers
09.12.2016 | Forschungszentrum Jülich

nachricht Electron highway inside crystal
09.12.2016 | Julius-Maximilians-Universität Würzburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>