Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Far-out findings -- New analysis suggests planets were formed from a giant mix

18.12.2006
Our Solar System may have been created in a gigantic mixing process far more extensive than previously imagined, according to research published today.

The findings, reported in the journal Science, come from the first analysis of dust fragments from Comet Wild-2, captured by NASA's Stardust spacecraft and brought to Earth in January 2006. Because comets are among the oldest objects in the Solar System, the team, which includes researchers from Imperial College London and the Natural History Museum, believes their sample of dust can provide insights into how Earth and other planets came to be formed.

Using spectroscopy technology which does not damage the mineral content of the particles, the team found that the comet dust is made up of many different mineral compositions rather than a single dominant one. This implies that the dust was formed in many different environments before coming together to make the comet, indicating a great deal of mixing in the early Solar System prior to the formation of planets.

Particularly significant was the discovery of calcium aluminium inclusions, which are amongst the oldest solids in the Solar System and are thought to have formed close to the young Sun. This discovery suggests that components of the comet came from all over the early Solar System, with some dust having formed close to the Sun and other material coming from the asteroid belt between Mars and Jupiter. Since Wild-2 originally formed in the outer Solar System, this means that some of its composite material has travelled great distances. Dr Phil Bland of Imperial's Department of Earth Science and Engineering says:

"We weren't expecting to find such widely-spread material in the sample of dust we were given to examine. The composition of minerals is all over the place, which tells us that the components that built this comet weren't formed in one place at one time by one event. It seems that the Solar System was born in much more turbulent conditions than we previously thought."

The researchers have also found evidence of surprising variety in cometary composition. NASA's 2005 Deep Impact mission, which provided images of material blasted from the nucleus of the comet Tempel 1, revealed evidence of aqueous activity within the comet. However the dust from Wild-2 has none of those characteristics and apparently has not interacted with water at all. Anton Kearsley of the Natural History Museum says:

"This is a very interesting mismatch, and it seems that comets are not all the same. Perhaps they vary as much in their evolution as in the composition of the dust from which they are made."

This is the first time scientists have had the opportunity to study samples from a comet, having previously relied on studying comets from afar or analysing interplanetary dust particles of uncertain origin. Dr Bland adds:

"Comets are likely to be the oldest objects in our Solar System and their components have remained largely unchanged, so discovering more about what they have experienced gives us a snapshot of the processes that formed the planets over four and a half billion years ago. Fundamentally we still don't know how you make planets from a cloud of dust and gas. Hopefully the Wild-2 samples will help us towards an answer."

Abigail Smith | EurekAlert!
Further information:
http://www.imperial.ac.uk

More articles from Physics and Astronomy:

nachricht Hope to discover sure signs of life on Mars? New research says look for the element vanadium
22.09.2017 | University of Kansas

nachricht Calculating quietness
22.09.2017 | Forschungszentrum MATHEON ECMath

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>