Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Far-out findings -- New analysis suggests planets were formed from a giant mix

18.12.2006
Our Solar System may have been created in a gigantic mixing process far more extensive than previously imagined, according to research published today.

The findings, reported in the journal Science, come from the first analysis of dust fragments from Comet Wild-2, captured by NASA's Stardust spacecraft and brought to Earth in January 2006. Because comets are among the oldest objects in the Solar System, the team, which includes researchers from Imperial College London and the Natural History Museum, believes their sample of dust can provide insights into how Earth and other planets came to be formed.

Using spectroscopy technology which does not damage the mineral content of the particles, the team found that the comet dust is made up of many different mineral compositions rather than a single dominant one. This implies that the dust was formed in many different environments before coming together to make the comet, indicating a great deal of mixing in the early Solar System prior to the formation of planets.

Particularly significant was the discovery of calcium aluminium inclusions, which are amongst the oldest solids in the Solar System and are thought to have formed close to the young Sun. This discovery suggests that components of the comet came from all over the early Solar System, with some dust having formed close to the Sun and other material coming from the asteroid belt between Mars and Jupiter. Since Wild-2 originally formed in the outer Solar System, this means that some of its composite material has travelled great distances. Dr Phil Bland of Imperial's Department of Earth Science and Engineering says:

"We weren't expecting to find such widely-spread material in the sample of dust we were given to examine. The composition of minerals is all over the place, which tells us that the components that built this comet weren't formed in one place at one time by one event. It seems that the Solar System was born in much more turbulent conditions than we previously thought."

The researchers have also found evidence of surprising variety in cometary composition. NASA's 2005 Deep Impact mission, which provided images of material blasted from the nucleus of the comet Tempel 1, revealed evidence of aqueous activity within the comet. However the dust from Wild-2 has none of those characteristics and apparently has not interacted with water at all. Anton Kearsley of the Natural History Museum says:

"This is a very interesting mismatch, and it seems that comets are not all the same. Perhaps they vary as much in their evolution as in the composition of the dust from which they are made."

This is the first time scientists have had the opportunity to study samples from a comet, having previously relied on studying comets from afar or analysing interplanetary dust particles of uncertain origin. Dr Bland adds:

"Comets are likely to be the oldest objects in our Solar System and their components have remained largely unchanged, so discovering more about what they have experienced gives us a snapshot of the processes that formed the planets over four and a half billion years ago. Fundamentally we still don't know how you make planets from a cloud of dust and gas. Hopefully the Wild-2 samples will help us towards an answer."

Abigail Smith | EurekAlert!
Further information:
http://www.imperial.ac.uk

More articles from Physics and Astronomy:

nachricht Scientists reach back in time to discover some of the most power-packed galaxies
28.02.2017 | Clemson University

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Scientists reach back in time to discover some of the most power-packed galaxies

28.02.2017 | Physics and Astronomy

Nano 'sandwich' offers unique properties

28.02.2017 | Materials Sciences

Light beam replaces blood test during heart surgery

28.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>