Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Stardust findings override some commonly held astronomy beliefs

Contrary to a popular scientific notion, there was enough mixing in the early solar system to transport material from the sun's sizzling neighborhood and deposit it in icy deep-space comets.

It might have been like a gentle eddy in a stream or more like an artillery blast, but evidence from the Stardust mission shows that material from the sun’s vicinity traveled to the edge of the solar system, beyond Pluto, as the planets were born.

"Many people imagined that comets formed in total isolation from the rest of the solar system. We have shown that's not true," said Donald Brownlee, the University of Washington astronomer who is principal investigator, or lead scientist, for Stardust.

"As the solar system formed 4.6 billion years ago, material moved from the innermost part to the outermost part. I think of it as the solar system partially turning itself inside out," said Brownlee, the lead author of 183 on the primary paper detailing the first research results from the Stardust mission, published in the Dec. 15 edition of the journal Science. Brownlee is a coauthor of the other six papers on Stardust results being published in Science, which also are the subject of a news conference and scientific presentations at the fall meeting of the American Geophysical Union in San Francisco.

The National Aeronautics and Space Administration's Stardust mission was launched in February 1999 and met comet Wild 2 (pronounced Vilt) beyond the orbit of Mars in January 2004. The comet formed more than 4.5 billion years ago and had remained preserved in the frozen reaches of the outer solar system until 1974 when a close encounter with Jupiter shifted the comet's orbit to a path between Mars and Jupiter. After a 2.88 billion-mile journey, Stardust returned to Earth last January with a payload of thousands of tiny particles from Wild 2.

Among the biggest surprises, Brownlee said, was finding material that formed in the hottest part of the solar system.

"If those materials had gotten any hotter they would have vaporized," he said. "The most extreme particle was the second one we worked on in my lab. These types of particles are among the oldest things in the solar system."

That particle was a calcium-aluminum inclusion, a rare material seen in some meteorites and the very type of matter that scientists used as an argument for flying Stardust to less than 150 miles from Wild 2. At that close range, the fast-moving particles could have seriously damaged the spacecraft, but Brownlee and others felt it was necessary to take that risk if they were to have a chance to determine an upper limit of material that formed near the sun that ended up at the farthest fringes of the solar system.

"Truthfully, we really didn't expect to find anything from the inner solar system. Instead, it showed up in the second particle we looked at," he said. The scientists also found magnesium olivine, a primary component of the green sand found on some Hawaiian beaches and, like a calcium-aluminum inclusion, one of the first things to form in the cooling solar nebula.

Brownlee estimates that as much as 10 percent of the material in comets came from the inner solar system. "That's a real surprise because the common expectation was that comets would be made of interstellar dust and ice."

But interstellar dust has a glassy characteristic, he said, while the particles that formed around stars and are found in comets are partially crystalline. It was suggested previously that interstellar dust had been mildly heated to transform its glassy substance into the crystalline comet contents.

"What we've seen, I believe, is totally incompatible with that interpretation," Brownlee said. "The particles we've seen have been heavily heated. Astronomical interpretations will be affected by that."

Wild 2's personality seems to be different from that of comet Tempel 1, which was closely examined in a mission called Deep Impact. In that case, a probe crashed into the comet surface and the properties of the resulting dust were analyzed using the infrared part of the spectrum. But Brownlee notes that while Tempel 1 was examined remotely from a distance, Stardust returned actual samples for scientists to study.

"The comets may be different from each other, or different observations could simply be a result of the different techniques used to examine them. It is a challenge for us to understand how they are different and why," he said.

Besides the UW, other major partners for the $212 million Stardust project are NASA's Jet Propulsion Laboratory, Lockheed Martin Space Systems, The Boeing Co., Germany's Max-Planck Institute for Extraterrestrial Physics, NASA Ames Research Center, the University of Chicago, The Open University in England and NASA's Johnson Space Center.

Brownlee has noted the irony that the tiny specks of comet dust are being examined by some of the largest investigative tools, such as the 2-mile-long Stanford Linear Accelerator. But with more than 150 scientists studying dust from Wild 2, Stardust also is driving the advance of new technology, including development of the world's highest-resolution microscope at the Lawrence Livermore National Laboratory.

"We're doing things no one ever imagined we could do, even at the time we launched the mission," Brownlee said. "We've taken a pinch of comet dust and are learning incredible things."

Vince Stricherz | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht First results of NSTX-U research operations
26.10.2016 | DOE/Princeton Plasma Physics Laboratory

nachricht Scientists discover particles similar to Majorana fermions
25.10.2016 | Chinese Academy of Sciences Headquarters

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>