Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


ESA mission controllers react to solar flare

An energetic storm on the Sun has forced ESA mission controllers to react to anomalies or take action to avoid damage to spacecraft. Several missions, including Integral, Cluster and Envisat, felt the storm's effects, highlighting the need for ESA's ongoing development of space weather forecasting tools.

The joint ESA/NASA spacecraft SOHO (Solar & Heliospheric Observatory) imaged a large solar flare on 13 December that led to an energetic solar radiation storm.

The flare, detected by the LASCO (Large Angle and Spectrometric Coronagraph Experiment) spectrometer on board SOHO, gave rise to a powerful coronal mass ejection (CME), a stream of fast-moving atomic particles, directed towards Earth. The flare also generated X-rays.

The ejection arrived at Earth 14 December between 13:00-19:00 CET (12:00-18:00 UTC), where it gave rise to a strong geomagnetic storm; initial edges of the ejection were detected as early as 04:00 CET (03:00 UTC) on 13 December.

The coronal mass ejection came during a week of intense solar activity that is not yet over. An additional peak event occurred during the night of 14 December, and ground controllers on several ESA missions have reported varying effects on their spacecraft.

Four-spacecraft Cluster II mission was one of the most affected

"We saw three anomalies on 13 December. Cluster 1 had a minor instrument anomaly, while Cluster 2 and 4 had on-board systems affected," says Juergen Volpp, Spacecraft Operations Manager for Cluster at ESA's Space Operations Centre (ESOC) in Germany. "The Attitude and Orbit Control unit on Cluster 2 lost power and autonomously switched over to its redundant unit, while the High-Power Amplifier on Cluster 4 switched itself off. This was a new occurrence which we hadn't seen before," he said.

"When you have a burst, the flux of very fast charged particles increases dramatically. This can cause discharges in electronic components - the so-called 'single-event upsets' - on the spacecraft, as well as damage or loss of data in solid-state memories," says Volpp.

Volpp says he can't be certain that the increased energetic particle flux triggered the anomalies, but their occurrence is strongly correlated with the timing of the peak burst on 13 December. He expects the mission to be operating normally again in a few days.

Envisat & Integral affected

Envisat also experienced an unexpected anomaly correlated with the particle flux's arrival at Earth.

"Operation of the Envisat Payload Module Computer was autonomously suspended, causing all payload instruments to be switched off. It happened around 19:00 CET, just before the particle peak on the 13th," said Frank Diekmann, Spacecraft Operations Manager for Envisat. "We are still in a period of very high solar activity," he added.

Controllers working on Integral had perhaps the best sense of the recent solar activity - two of the mission's four instruments include the JEM-X and IBIS experiments, sensitive to X-rays and charged particles, respectively. However, they also had to take the most proactive action to avoid damage to the spacecraft's sensitive sensors.

"JEM-X automatically switched itself into safe mode twice, and we manually switched IRIS off to avoid over-exposure," says Michael Schmidt, Spacecraft Operations Manager for Integral.

ESA deep space missions avoid harm

The flurry of activity for controllers working on ESA missions orbiting in the region of the Earth was a direct result of Thursday's coronal mass ejection heading more or less directly towards our planet.

"The mass ejection headed from the Sun to Earth and our planetary missions, on the other hand, weren't affected," explains Paolo Ferri, Head of the Solar and Planetary Missions Division at ESOC.

Ferri says that CME events are highly directional, and that by chance all three of ESA's deep space missions, Mars Express, Venus Express and Rosetta, happen to be oriented on the side of the Sun opposite to the Earth right now. "Our interplanetary spacecraft didn't see anything," he adds.

However, radio signals transmitted from the three deep space missions must pass by the Sun to reach Earth, and so flight control teams could in fact notice the increased solar activity as higher-than-normal interference in the signals received on the ground.

Improved space weather forecasting tools now in development

The recent solar activity highlights the ongoing need for accurate space weather forecasting and warning systems, so that spacecraft operators can take action to protect instruments and systems hours or even minutes before a peak of radiation or particles passes.

ESOC's Mission Control Technologies unit is working with the Institute for the Development of New Technologies, an academic institute in Caparica, Portugal, and Deimos Engenharia, a private company, in Lisbon, Portugal, to develop automated tools that can assess and eventually forecast space weather.

The Space Environment Information System for Operations (SEIS), now in use at ESOC, has been tracking this month's solar activity based on data gathered from numerous participating ground observatories as well as spacecraft including Integral, Envisat and XMM-Newton, NASA's GOES (Geostationary Operational Environmental Satellite) spacecraft.

"By monitoring reports generated by SEIS, we can estimate when solar fluxes will reach the Earth, which can vary from a few hours to a few days from the time of a solar flare," says Federico Di Marco, a flight engineer working on Integral, the reference mission for the new SEIS tool.

His colleague Orlane Bergogne, also on the Integral team, produces a Radiation Assessment generated by SEIS, showing X-ray and particle fluxes for the month of December."

"The current solar activity actually began on 5 December, and we could already see effects on Integral on 6 December. Eventually, we aim to develop SEIS into a tool that can issue warnings and alerts to any mission operator, which will be particularly valuable to spacecraft that don't have their own radiation sensors on board," she says.

The Sun's active week

As reported on the SOHO mission site, the Sun unleashed a large (X-3 class) solar flare this week on 13 December 2006, along with a coronal mass ejection that headed towards Earth. Solar flares are classified as A, B, C, M, or X, with the "X" category ranked as the strongest, based on peak flux, or particle density.

The source of this week's eruptions was the very active sunspot region 930. A shower of high-energy particles appeared as specks and white streaks on the imagers aboard SOHO; the CME particles travel at speeds of up to several thousand kilometres per second.

When the charged CME particles arrive at Earth, they can cause a variety of disruptions, affecting communication and navigation networks, telephone systems and broadcasts.

On 14 December, China's People's Daily reported widespread disruption of shortwave radio communications in China on Wednesday morning. Astronauts on board the International Space Station slept in protected areas of the station as a precaution.

In October 2003, a solar flare forced Japan's Data Relay Test Satellite (DRTS), also known as Kodama, into safe mode.

Bernhard Von Weihe | alfa
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>