Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ESRF helps reveal the origin of the Solar System

18.12.2006
Particles returned to Earth last January by the Stardust spacecraft from comet Wild 2 are yielding precious information about the origin of the solar system, thanks to the brilliant X-rays produced at several of the world's synchrotron facilities, including the ESRF.

Although the particles are tiny, the X-ray beams available at synchrotrons can be even smaller, enabling researchers to illuminate the cometary material and in some cases determine the distribution of elements within the particles without damaging them. These results describe the overall composition and chemistry of the samples returned by Stardust, and are published as part of a special series of papers in the 15 December 2006 edition of the journal Science.

Our Solar System is about 4.5 billion years old, and the details of its origin are still a mystery to researchers. Scientists theorize that large, interstellar dust clouds give rise to new stars and planetary systems. As these dust clouds collapse, a central star forms surrounded by a rotating disk of dense gas. The planets of our Solar System likely coalesced from one of these disks.

Wild 2 is believed to have originated within a cloud of comets just beyond the orbit of Neptune called the Kuiper Belt. Because Kuiper Belt objects spend most of their time far away from the Sun, researchers suspect they remain unchanged by radiation, heating and aqueous alteration and therefore likely carry intact material from the earliest ages of the solar system.

The cometary samples were collected from the comet Wild 2 by the Stardust spacecraft, which travelled 2.88 billion miles during its seven-year odyssey before returning to Earth. Stardust returned about one microgram of cometary dust, the largest of which are about 10 microns—about a tenth the diameter of a human hair.

The samples of the Stardust mission examined by the scientists were compared with the most primitive meteorites found on earth, which are believed to be samples left over from the formation of the solar system. The samples contain a wide variety of minerals and organic materials that look similar to those seen in primitive meteorites. But the Stardust samples also revealed the presence of new materials not previously found in meteorites. The chemical analysis of the Stardust samples could therefore improve our understanding of the chemistry of the early solar system.

The researchers also discovered that the samples contained minerals similar to compounds in meteorites known to form at high temperatures. These compounds, called Calcium Aluminum-rich Inclusions (CAIs), are believed to have been formed in the innermost part of the solar nebula, well inside the orbit of Mercury. This discovery challenges the belief that comets are formed only beyond the orbit of Jupiter, and suggests that these cometary materials must have somehow been transported to the edge of the solar system where Wild 2 formed. The results also suggest that the materials that formed our solar system underwent considerable mixing as the sun and planets formed.

A pinch of dust holds the answer

"We have taken a pinch of comet dust and are learning incredible things," said Stardust principal investigator Donald Brownlee, a professor at the University of Washington and lead author of an overview technical paper, one of seven reports in Science about the mission's initial findings.

During preliminary examination, over 200 samples from approximately 35 impact tracks were distributed to the 175 members of the Preliminary Examination Team around the world. The samples represent only a small fraction of the total collected material returned by the Stardust spacecraft. The rest will be preserved for study by future scientists as tools and techniques improve.

The diverse techniques needed to study the returned cometary material required the use of six synchrotron facilities around the world. Two European teams, one French from the Institut d’Astrophysique Spatiale in Orsay and The Ecole Normale Supérieur in Lyon, and the other from the Universities of Frankfurt (Germany), Antwerp and Ghent (Belgium), came to the ESRF to carry out experiments on a total of 7 samples. The minute size of the samples and their entrapment deep within slices of aerogel, called "keystones," made the brilliant X-ray radiation produced by synchrotron light sources ideal for peering into the particles. At the ESRF, they combined diffraction technique with high- and low-energy microspectroscopy to analyse the tracks in keystones. Due to the penetrating nature of the X-ray beams, the elemental distribution along the tracks could be mapped without removing the particles from the aerogel. Thus, crucial information was obtained which will be of use to subsequent researchers who wish to study the same particles.

Participating institutions included the European Synchrotron Radiation Facility in Grenoble, France; the Advanced Photon Source at Argonne National Laboratory, USA; the Stanford Synchrotron Radiation Laboratory at the Stanford Linear Accelerator Center, USA; the Advanced Light Source in Lawrence Berkeley National Laboratory, USA; the National Synchrotron Light Source at Brookhaven National Laboratory, USA; and Spring-8, Japan Synchrotron Radiation Research Institute.

More information on the Stardust mission is available at http://stardust.jpl.nasa.gov/home/index.html.

Montserrat Capellas | alfa
Further information:
http://stardust.jpl.nasa.gov/home/index.html
http://www.esrf.fr/news/pressreleases/stardust

More articles from Physics and Astronomy:

nachricht Breaking the optical bandwidth record of stable pulsed lasers
24.01.2017 | Institut national de la recherche scientifique - INRS

nachricht European XFEL prepares for user operation: Researchers can hand in first proposals for experiments
24.01.2017 | European XFEL GmbH

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>