Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ESRF helps reveal the origin of the Solar System

18.12.2006
Particles returned to Earth last January by the Stardust spacecraft from comet Wild 2 are yielding precious information about the origin of the solar system, thanks to the brilliant X-rays produced at several of the world's synchrotron facilities, including the ESRF.

Although the particles are tiny, the X-ray beams available at synchrotrons can be even smaller, enabling researchers to illuminate the cometary material and in some cases determine the distribution of elements within the particles without damaging them. These results describe the overall composition and chemistry of the samples returned by Stardust, and are published as part of a special series of papers in the 15 December 2006 edition of the journal Science.

Our Solar System is about 4.5 billion years old, and the details of its origin are still a mystery to researchers. Scientists theorize that large, interstellar dust clouds give rise to new stars and planetary systems. As these dust clouds collapse, a central star forms surrounded by a rotating disk of dense gas. The planets of our Solar System likely coalesced from one of these disks.

Wild 2 is believed to have originated within a cloud of comets just beyond the orbit of Neptune called the Kuiper Belt. Because Kuiper Belt objects spend most of their time far away from the Sun, researchers suspect they remain unchanged by radiation, heating and aqueous alteration and therefore likely carry intact material from the earliest ages of the solar system.

The cometary samples were collected from the comet Wild 2 by the Stardust spacecraft, which travelled 2.88 billion miles during its seven-year odyssey before returning to Earth. Stardust returned about one microgram of cometary dust, the largest of which are about 10 microns—about a tenth the diameter of a human hair.

The samples of the Stardust mission examined by the scientists were compared with the most primitive meteorites found on earth, which are believed to be samples left over from the formation of the solar system. The samples contain a wide variety of minerals and organic materials that look similar to those seen in primitive meteorites. But the Stardust samples also revealed the presence of new materials not previously found in meteorites. The chemical analysis of the Stardust samples could therefore improve our understanding of the chemistry of the early solar system.

The researchers also discovered that the samples contained minerals similar to compounds in meteorites known to form at high temperatures. These compounds, called Calcium Aluminum-rich Inclusions (CAIs), are believed to have been formed in the innermost part of the solar nebula, well inside the orbit of Mercury. This discovery challenges the belief that comets are formed only beyond the orbit of Jupiter, and suggests that these cometary materials must have somehow been transported to the edge of the solar system where Wild 2 formed. The results also suggest that the materials that formed our solar system underwent considerable mixing as the sun and planets formed.

A pinch of dust holds the answer

"We have taken a pinch of comet dust and are learning incredible things," said Stardust principal investigator Donald Brownlee, a professor at the University of Washington and lead author of an overview technical paper, one of seven reports in Science about the mission's initial findings.

During preliminary examination, over 200 samples from approximately 35 impact tracks were distributed to the 175 members of the Preliminary Examination Team around the world. The samples represent only a small fraction of the total collected material returned by the Stardust spacecraft. The rest will be preserved for study by future scientists as tools and techniques improve.

The diverse techniques needed to study the returned cometary material required the use of six synchrotron facilities around the world. Two European teams, one French from the Institut d’Astrophysique Spatiale in Orsay and The Ecole Normale Supérieur in Lyon, and the other from the Universities of Frankfurt (Germany), Antwerp and Ghent (Belgium), came to the ESRF to carry out experiments on a total of 7 samples. The minute size of the samples and their entrapment deep within slices of aerogel, called "keystones," made the brilliant X-ray radiation produced by synchrotron light sources ideal for peering into the particles. At the ESRF, they combined diffraction technique with high- and low-energy microspectroscopy to analyse the tracks in keystones. Due to the penetrating nature of the X-ray beams, the elemental distribution along the tracks could be mapped without removing the particles from the aerogel. Thus, crucial information was obtained which will be of use to subsequent researchers who wish to study the same particles.

Participating institutions included the European Synchrotron Radiation Facility in Grenoble, France; the Advanced Photon Source at Argonne National Laboratory, USA; the Stanford Synchrotron Radiation Laboratory at the Stanford Linear Accelerator Center, USA; the Advanced Light Source in Lawrence Berkeley National Laboratory, USA; the National Synchrotron Light Source at Brookhaven National Laboratory, USA; and Spring-8, Japan Synchrotron Radiation Research Institute.

More information on the Stardust mission is available at http://stardust.jpl.nasa.gov/home/index.html.

Montserrat Capellas | alfa
Further information:
http://stardust.jpl.nasa.gov/home/index.html
http://www.esrf.fr/news/pressreleases/stardust

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>