Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stardust analysis reveals turbulent start to the Solar System

15.12.2006
Analysis of comet samples brought back to earth by NASA’s Stardust mission reveal that the start of the Solar System was a lot more turbulent than first thought.

Dust particles from comet Wild 2 are found to originate from both the inner reaches and outer edges of the Solar System indicating a massive amount of mixing of particles prior to the formation of the comet. The findings of the initial analysis of comet samples are published in Science today (15th December)

The precious cometary samples were collected by the Stardust spacecraft which journeyed 2.88 million miles during a seven year round trip from Earth to comet Wild 2 and back again. Following the capture of the particles from the comet in January 2004 the capsule containing the interstellar cargo was returned to Earth in January 2006. After its retrieval from the Utah desert grains of the comet were distributed to worldwide teams of scientists to begin the initial analysis.

In the UK scientists from The Open University, Imperial College London, the Natural History Museum and the Universities of Kent, Manchester and Glasgow are involved in the analysis.

The scientists have used a wide variety of sophisticated laboratory analytical techniques to study the samples and have found that they reveal a great deal not only about the composition of comets, but also provide key insights into the earliest history of our solar system.

Professor Monica Grady, from The Open University is a member of the Stardust Spectroscopy team, comments, “We are all very excited about what these results mean for our understanding of how the Solar System formed – and what this also means for other planetary systems. It seems that the cloud of gas and dust from which our Sun and planets grew was much more active and turbulent than had been appreciated, with mixing between different populations of grains taking place across the whole width of the disk.”

The returned samples consist of extremely small particles, from below 1 up to 300 micrometre (1/1000th of a millimetre) in diameter. The diameter of a human hair, for comparison, is 50 micrometres. Locked within the cometary particles is unique chemical and physical information that provides a record of the formation of the planets and the materials from which they were made.

The team from The Open University used a variety of instruments to determine the shape, composition and structure of the grains from the comet. They also analysed pieces of foil hit by the comet dust to measure the size and toughness of the grains.

Dr Simon Green, an expert in comets and asteroids, and a mission co-investigator, also from The Open University said, “I am intrigued by the unexpected pattern of impacts on the dust collectors, and what this may be able to tell us about the structure of cometary dust.”

Many of the grains were silicates – iron and magnesium rich grains that are the usual constituents commonly observed around newly forming stars where planets are being created. But one of the most exciting results was that some of the dust grains were not silicates, but were rich in calcium and aluminium, grains that are only produced at very high temperatures. This is important because it shows that some of the dust must have been formed very close to the centre of our Solar System. And it leaves a mystery as to how they managed to become mixed in with the rest of the dust and gas that made up the comets, forming on the outer edges of the Solar System.

Dr Ian Franchi from The Open University adds, “This is an astonishing set of data that we are still learning how to interpret. We have not yet begun to unravel the relationship between the organic and inorganic parts of the comet dust.”

Using spectroscopy technology, which does not damage the mineral content of the particles, the Stardust scientists from Imperial College London and the Natural History Museum have found that the comet dust is made up of many different mineral compositions rather than a single dominant one. This implies that the dust was formed in many different environments before coming together to make the comet, indicating a great deal of mixing in the early Solar System prior to the formation of the planets.

Of particular significance is the discovery of calcium aluminium inclusions, which are amongst the oldest solids in the Solar System and are thought to have formed close to the young Sun. This discovery suggests that the components of the comet came from all over the Solar System, with some dust having being formed close to the Sun and other material coming from the asteroid belt between Mars and Jupiter.

Dr Phil Bland, of Imperial’s Department of Earth Science and Engineering said, “We weren’t expecting to find such widely spread material in the sample of dust we were given to examine. The composition of minerals is all over the place, which tells us that the components that built this comet weren’t formed in one place at one time by one event. It seems that the Solar System was born in much more turbulent conditions than we previously thought.”

The researchers have also found evidence of surprising variety in cometary composition. NASA’s 2005 Deep Impact mission, which provide images of materials blasted from the nucleuss of comet Tempel 1, revealed evidence of aqueous activity within the comet. However, the dust from Wild-2 has none of those characteristics and apparently has not interacted with water at all. Dr Anton Kearsley of the Natural History Museum says, “This is a very interesting mismatch, and it seems that comets are not all the same. Perhaps they vary as much in their evolution as in the composition of dust from which they are made.”

The samples that have been analysed to date were obtained from only 10 of the 132 aerogel tiles in the Stardust collector, and a similar fraction of the exposed aluminium foils, that were exposed directly to the comet, leaving the remaining samples for future studies.

Seven papers on the initial findings of the Stardust mission appear in the December 15th edition of Science.

Gill Ormrod | alfa
Further information:
http://www.pparc.ac.uk

More articles from Physics and Astronomy:

nachricht Witnessing turbulent motion in the atmosphere of a distant star
23.08.2017 | Max-Planck-Institut für Radioastronomie

nachricht Heating quantum matter: A novel view on topology
22.08.2017 | Université libre de Bruxelles

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>