Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Jules Verne goes hot and cold

15.12.2006
For 21 days in a row, Jules Verne, the first Automated Transfer Vehicle (ATV), has not only survived the most stringent conditions of the space environment, but it has successfully tested on the ground its flight software and hardware under the toughest simulated conditions of space vacuum, freezing temperatures and burning sun radiation.
Jules Verne ATV, the most complex spacecraft ever developed in Europe, is due to make its inaugural flight atop an Ariane 5 in summer 2007 to re-supply the International Space Station. It has just completed its most exhaustive test campaign at ESA’s test facilities at ESTEC, in Noordwijk, the Netherlands.

"Started on 22 November, the test campaign, with different cycles of cold and hot phases, has been performed according to schedule and the 'behaviour' of this complex spaceship has been generally in line with the expected one when reacting to the cold and hot environment", said Bachisio Dore, the ESA ATV manager of Assembly Integration & Verification (AIV). "The successful completion of this test campaign represents a major milestone for the ATV Programme."

Thermal challenge

The most challenging aspect of the test has been for Jules Verne ATV to keep its temperatures within strict limits compatible with all the thousands parts of hardware which make up its sophisticated subsystems. Specific software and new technology enable ATV to balance the temperatures on the spaceship and allow it to fly smoothly in the freezing darkness, the burning sunshine radiation and in the vacuum of the orbital environment.

"It is like putting your computer laptop in the freezer, then exposing it to the Sun in the summer heat and back again to the freezer while you are continually using it", explained one of the 35 Astrium and subcontractor engineers who are monitoring the spacecraft round the clock, seven days a week.

Jules Verne is no laptop – it is a 20-tonne spacecraft, the size of a double-decker bus, with dozens of powerful computers and a large amount of electronics. Its software of one million lines of code makes it the largest and most elaborate ever developed in Europe.

The 625 built-in thermal sensors and another 250 extra sensors, especially added inside and around Jules Verne for the test, have been carefully monitoring that the temperatures remain within their acceptable limits around the clock.

At the same time, inside the huge 2 300 m³ Large Space Simulator (LSS) chamber, in-orbit environmental conditions and thermal cycles have been reproduced. A typical vacuum level of one-millionth of a millibar was achieved, the outside chamber temperature was lowered to minus 30°C or minus 80°C according to the test cycle; and for short periods, the Sun simulator was activated, providing a horizontal solar beam of 6-metre diameter, to radiate a powerful flux of 1400 Watts per square metre on the dazzling white layer protecting Jules Verne.

State-of-the-art heat pipes

The ATV consists of two main modules with their own temperature requirements. The pressurized Integrated Cargo Carrier, with its 48m³ compartment dedicated to carry the entire re-supply cargo to the Station (with a maximum mass of 7 667 kg). This module, which docks to the ISS, must remain between 20°C and 30°C between launch and docking, and during the attached phase with the ISS, especially when refuelling propellant is transferred to the Station.

The non-pressurized avionics/propulsion module, which includes rocket engines, electrical power, electronics, computers, communications and the avionics, has to remain between 0°C and 40°C.

The avionics bay, which is the brain of the ATV, produces its own heat from the large numbers of electronic equipment, and at the same time manages a very sophisticated system to control overheating. "Thanks to 40 state-of-the-art variable conductance heat pipes located in the avionics bay, the ATV is able to carry away the heat and release the energy directly into space or, otherwise, to warm up other parts in a very economic fashion. This new technology means we can get rid of 50% more energy for the whole spaceship, and still maintain the right internal temperature environment", explains Patrick Oger, an Astrium thermal engineer.

Another objective of the test was to monitor the outgassing of the ATV, caused by some materials of the spaceship which, under vacuum conditions, release some internal gases that are usually trapped inside them. ATV gas samples were collected during the tests in the vacuum chamber and will be later analyzed. The aerospace engineers want to be sure that ATV gases do not contaminate the critical mechanisms of the spacecraft, like those that rotate the solar panels towards the Sun. Their rotation at different temperatures performed properly, even though the four solar panels were not mounted on the ATV for the test.

One thousand test sequences

The main objective of the test was to verify that under the thermal vacuum environment all the hardware items are working together properly. To achieve this goal for a complex spacecraft such ATV, the development, tuning and validation by Astrium engineers of about one thousand test procedures and automated test sequences were required.

For example, during the test, ATV engineers also activated some of the moving parts of the spaceship. As soon as the order was given to extend or retract the probe of the docking system, they were able to see it moving slowly, while looking through the small LSS windows near the top of the spaceship.

In the final days of testing, several simulated firings of the 32 engine thrusters were performed with helium gas, in order to verify the proper interaction between the propulsion and avionics subsystems. Additionally all the hardware needed by ATV to perform emergency manoeuvres to avoid collision with the ISS was tested during the thermal tests by simulating the performance of four such manoeuvres.

"Thanks to these extensive tests, it has been possible to validate the whole ATV, that is to say all the hardware while it was reacting to the harsh orbital conditions. At the same time we could check the complete performance of the hardware and software needed for power and thermal control under close-to-space conditions", says Marc Chevalier, the Astrium ATV manager of the Assembly Integration Test (AIT). "This successful test will also show us some minor improvements in the software procedures which it would be good to implement."

In the coming weeks, about 50 gigabytes of test data stored during the 270 hours of functional testing performed during the thermal test, which have been archived, will be carefully analyzed to be sure that any minor anomalies or bugs are fully understood.

Jean Coisne | alfa
Further information:
http://www.esa.int/SPECIALS/ATV/SEMKL4QJNVE_0.html

More articles from Physics and Astronomy:

nachricht APEX takes a glimpse into the heart of darkness
25.05.2018 | Max-Planck-Institut für Radioastronomie

nachricht First chip-scale broadband optical system that can sense molecules in the mid-IR
24.05.2018 | Columbia University School of Engineering and Applied Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>