Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Far-out findings - new analysis suggests planets were formed from a giant mix

15.12.2006
Our Solar System may have been created in a gigantic mixing process far more extensive than previously imagined, according to research published today.

The findings, reported in the journal Science, come from the first analysis of dust fragments from Comet Wild-2, captured by NASA's Stardust spacecraft and brought to Earth in January 2006. Because comets are among the oldest objects in the Solar System, the team, which includes researchers from Imperial College London and the Natural History Museum, believes their sample of dust can provide insights into how Earth and other planets came to be formed.

Using spectroscopy technology which does not damage the mineral content of the particles, the team found that the comet dust is made up of many different mineral compositions rather than a single dominant one. This implies that the dust was formed in many different environments before coming together to make the comet, indicating a great deal of mixing in the early Solar System prior to the formation of planets.

Particularly significant was the discovery of calcium aluminium inclusions, which are amongst the oldest solids in the Solar System and are thought to have formed close to the young Sun. This discovery suggests that components of the comet came from all over the early Solar System, with some dust having formed close to the Sun and other material coming from the asteroid belt between Mars and Jupiter. Since Wild-2 originally formed in the outer Solar System, this means that some of its composite material has travelled great distances. Dr Phil Bland of Imperial's Department of Earth Science and Engineering says:

"We weren't expecting to find such widely-spread material in the sample of dust we were given to examine. The composition of minerals is all over the place, which tells us that the components that built this comet weren't formed in one place at one time by one event. It seems that the Solar System was born in much more turbulent conditions than we previously thought."

The researchers have also found evidence of surprising variety in cometary composition. NASA's 2005 Deep Impact mission, which provided images of material blasted from the nucleus of the comet Tempel 1, revealed evidence of aqueous activity within the comet. However the dust from Wild-2 has none of those characteristics and apparently has not interacted with water at all. Anton Kearsley of the Natural History Museum says:

"This is a very interesting mismatch, and it seems that comets are not all the same. Perhaps they vary as much in their evolution as in the composition of the dust from which they are made."

This is the first time scientists have had the opportunity to study samples from a comet, having previously relied on studying comets from afar or analysing interplanetary dust particles of uncertain origin. Dr Bland adds:

"Comets are likely to be the oldest objects in our Solar System and their components have remained largely unchanged, so discovering more about what they have experienced gives us a snapshot of the processes that formed the planets over four and a half billion years ago. Fundamentally we still don't know how you make planets from a cloud of dust and gas. Hopefully the Wild-2 samples will help us towards an answer."

The analysis was carried out by the Impacts and Astromaterials Research Centre, a joint Imperial-Natural History Museum research group funded by the Particle Physics and Astronomy Research Council.

Abigail Smith | alfa
Further information:
http://www.imperial.ac.uk
http://www.sciencemag.org

More articles from Physics and Astronomy:

nachricht Gamma rays will reach beyond the limits of light
23.10.2017 | Chalmers University of Technology

nachricht Creation of coherent states in molecules by incoherent electrons
23.10.2017 | Tata Institute of Fundamental Research

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>