Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Technique Studies How Plastic Solar Cells Turn Sunlight into Electricity

13.12.2006
A new analytical technique that uses infrared spectroscopy to study light-sensitive organic materials could lead to the development of cheaper, more efficient solar cells. Using infrared (IR) spectroscopy to study the vibrations of atoms within the material, the technique provides information about the movement of electrons within a film of carbon-based materials.

Obtaining this information is a critical step in the development of a new class of solar cells, which promise significant savings in production costs compared to conventional silicon-based cells. The new analytical technique, published as the cover story in this week's issue of the Journal of Physical Chemistry B, was developed by a team led by Penn State University researcher John B. Asbury, assistant professor of chemistry.

Organic photovoltaic devices (OPV) have become important because they are much less expensive to produce than silicon-based solar cells. The material consists of a film made of two different types of chemicals: a polymer that releases an electron when it is struck by a photon of light and a large molecule that accepts the freed electrons, which is based on the soccer-ball-shaped "buckminsterfullerene" carbon molecules popularly known as "buckyballs." Because the electrical interactions needed to produce an electric current occur at the interfaces of the two components of this polymer blend, materials scientists need to understand the arrangement of molecules in the film. Asbury's new analytical technique provides a closer look at this arrangement than the techniques that traditionally have been used. Previous studies, using atomic-force microscopy, supply general information about the packing of the molecules, but they provide very limited information about the interfaces where the molecules actually come together. IR spectroscopy, on the other hand, provides a more detailed picture of the interface by tracing the exchange of electrons between two molecules of the film.

"The problems with OPVs today are that they are not efficient enough and they tend to stop working over time," says Asbury. In order to develop a useful electric current, the flow between the two components must be optimized. "To improve performance, we need to understand what happens at the molecular level when light is converted to electrons," Asbury explains.

When the film is exposed to light, each photon excites an electron in the polymer. If an interface between the polymer molecule and the functionalized buckminsterfullerene exists, a current can be produced. However, in the materials developed to date, many of the electrons appear to become sidetracked. Asbury exposes the film to light using ultrashort laser pulses, which causes photons of light to be converted to electrons across the entire surface at the same time. Two-dimensional IR spectroscopy is used to monitor the vibration of the molecules within the film. "The vibrations of the molecules are strongly affected by the presence or absence of electrons," says Asbury. "We use these vibrations as a probe to track the movement of electrons. By varying the structures of the materials, we expect to identify the side paths that reduce efficiency and ultimately to use that information to guide material design." The ultimate goal is a solar cell that is sufficiently inexpensive and efficient that it can be used on a rooftop to provide the electrical energy needed in a building.

In addition to Asbury, the Penn State research team includes graduate students Larry W. Barbour and Maureen Hegadorn. The work was funded by the Camille and Henry Dreyfus Foundation, the Petroleum Research Fund, and Penn State.

Barbara K. Kennedy | EurekAlert!
Further information:
http://www.psu.edu

More articles from Physics and Astronomy:

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>