Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The University of Surrey catches high speed tube to success

13.12.2006
Leading UK technology venture company IP Group has teamed up with scientists from the University of Surrey’s Advanced Technology Institute (ATI) and CEVP Ltd, a leader in plasma tool manufacture, to form a new company, Surrey NanoSystems, to provide commercial tools for producing nanomaterials which will revolutionise the semiconductor industry.

IP Group has financed the joint venture company in which ATI scientists are developing a ‘NanoGrowthTM’ Machine in conjunction with specialists from CEVP Ltd. Using patented technologies and recipes developed by the University, the NanoGrowth machine represents the world's first commercial tool for low-temperature growth of carbon nanotubes, which can provide high quality, high speed connections to the next generation of silicon chips. The low temperatures used permit the use of existing silicon semiconductor materials which are not able to withstand the high growth temperatures previously required for the formation of nanotubes.

The research project was also funded by South East England Development Agency (SEEDA) which provided assistance with the early development work, with the aim of helping to realise the potential of nanotechnology in the South East by enabling mass production of nanomaterials as an affordable platform technology.

The revolutionary low temperature carbon nanotube growth process is expected to be of considerable use in both academic and commercial laboratories for the development of practical nanomaterial production techniques for high technology applications. Likely applications include low-resistance nanowires in integrated circuits, semiconducting nanotubes for fabricating high performance transistors, micro-miniature heatsinks, ultra-tough polymer composites, gas sensors and light sources for flat panel displays.

Professor Ravi Silva, Dr Guan Yow Chen of the University of Surrey and Ben Jensen, Technical Director for CEVP Ltd, represent the driving force behind this world leading development. Ben Jensen has previously developed and built machines for a large range of blue chip customers including IBM, Motorola, Segate, General Motors and Cambridge University.

Professor Michael Kearney, the University’s Head of School for Electronics and Physical Sciences, commented: “At Surrey we have created an environment which encourages an entrepreneurial attitude towards research and its exploitation. The active support of the University, local businesses, SEEDA and DTI have been essential ingredients in realising this breakthrough in nanotechnology manufacturing.”

Alan Aubrey, Chief Executive of IP Group, said: “This is our first spin-out company from the University of Surrey since setting up a commercialisation partnership with the university in February. We are delighted to have completed this investment in such an exciting growth area – backed by such a prestigious, award-winning team.”

Ben Jensen said: “I am incredibly excited by the partnership mix between IP Group, the University of Surrey and Surrey NanoSystems. This will enable the company to break new ground in the manufacturing and use of carbon nanotubes and nanostructures within CMOS process window. It will finally allow the material to be brought into the mainstream semiconductor manufacturing areas that from today should be limited only by the imaginations of the world’s leading scientists.”

Stuart Miller | alfa
Further information:
http://www.surrey.ac.uk
http://portal.surrey.ac.uk/portal/page?_pageid=799,1248861&_dad=portal&_schema=PORTAL

More articles from Physics and Astronomy:

nachricht When helium behaves like a black hole
22.03.2017 | University of Vermont

nachricht Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars
22.03.2017 | International Centre for Radio Astronomy Research

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>