Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The University of Surrey catches high speed tube to success

13.12.2006
Leading UK technology venture company IP Group has teamed up with scientists from the University of Surrey’s Advanced Technology Institute (ATI) and CEVP Ltd, a leader in plasma tool manufacture, to form a new company, Surrey NanoSystems, to provide commercial tools for producing nanomaterials which will revolutionise the semiconductor industry.

IP Group has financed the joint venture company in which ATI scientists are developing a ‘NanoGrowthTM’ Machine in conjunction with specialists from CEVP Ltd. Using patented technologies and recipes developed by the University, the NanoGrowth machine represents the world's first commercial tool for low-temperature growth of carbon nanotubes, which can provide high quality, high speed connections to the next generation of silicon chips. The low temperatures used permit the use of existing silicon semiconductor materials which are not able to withstand the high growth temperatures previously required for the formation of nanotubes.

The research project was also funded by South East England Development Agency (SEEDA) which provided assistance with the early development work, with the aim of helping to realise the potential of nanotechnology in the South East by enabling mass production of nanomaterials as an affordable platform technology.

The revolutionary low temperature carbon nanotube growth process is expected to be of considerable use in both academic and commercial laboratories for the development of practical nanomaterial production techniques for high technology applications. Likely applications include low-resistance nanowires in integrated circuits, semiconducting nanotubes for fabricating high performance transistors, micro-miniature heatsinks, ultra-tough polymer composites, gas sensors and light sources for flat panel displays.

Professor Ravi Silva, Dr Guan Yow Chen of the University of Surrey and Ben Jensen, Technical Director for CEVP Ltd, represent the driving force behind this world leading development. Ben Jensen has previously developed and built machines for a large range of blue chip customers including IBM, Motorola, Segate, General Motors and Cambridge University.

Professor Michael Kearney, the University’s Head of School for Electronics and Physical Sciences, commented: “At Surrey we have created an environment which encourages an entrepreneurial attitude towards research and its exploitation. The active support of the University, local businesses, SEEDA and DTI have been essential ingredients in realising this breakthrough in nanotechnology manufacturing.”

Alan Aubrey, Chief Executive of IP Group, said: “This is our first spin-out company from the University of Surrey since setting up a commercialisation partnership with the university in February. We are delighted to have completed this investment in such an exciting growth area – backed by such a prestigious, award-winning team.”

Ben Jensen said: “I am incredibly excited by the partnership mix between IP Group, the University of Surrey and Surrey NanoSystems. This will enable the company to break new ground in the manufacturing and use of carbon nanotubes and nanostructures within CMOS process window. It will finally allow the material to be brought into the mainstream semiconductor manufacturing areas that from today should be limited only by the imaginations of the world’s leading scientists.”

Stuart Miller | alfa
Further information:
http://www.surrey.ac.uk
http://portal.surrey.ac.uk/portal/page?_pageid=799,1248861&_dad=portal&_schema=PORTAL

More articles from Physics and Astronomy:

nachricht New NASA study improves search for habitable worlds
20.10.2017 | NASA/Goddard Space Flight Center

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

Metallic nanoparticles will help to determine the percentage of volatile compounds

20.10.2017 | Materials Sciences

Shallow soils promote savannas in South America

20.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>