Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Magnetic whirlpools feed Earth’s magnetosphere

07.12.2006
Giant whirlpools of electrically charged gas, some 40 000 kilometres across, have been witnessed above the Earth by a team of European and American scientists. Using data from ESA's Cluster quartet of spacecraft, the researchers have shown that these whirlpools inject electrified gas into the magnetic environment of the Earth.

The magnetic field generated inside the Earth protects the planet from the electrically charged particles given out by the Sun. However, it is only a partially effective shield.

In the same way that a car can only travel along roads, electrically charged gas, known as plasma, can only travel along magnetic field lines, never across them. For a car to suddenly change direction, it has to use a road junction.

For a particle of plasma to suddenly jump onto a different field line, there has to be a reconnection event. In a reconnection, magnetic fields lines spontaneously break and then join up with other nearby lines. In doing so, the plasma is suddenly redirected along new routes.

Scientists know this happens in Earth's magnetosphere because of changes to the plasma sheet. This is one of the inner regions of the Earth's magnetic field. Plasma in the sheet is usually hot and tenuous, whereas the solar wind is cooler and denser. At certain times, the sheet fills with cooler and denser plasma over the course of a few hours.

For this to happen, the solar wind plasma must somehow be able to cross the Earth’s magnetic boundary, known as the magnetopause. Yet, until now scientists had no observational evidence that reconnection inside whirlpools contribute to this process. "Wondering how the solar wind could get into the plasma sheet is how I became interested in this problem," says Katariina Nykyri, lead author of the results, from the Imperial College, London, UK.

Together with colleagues, Nykyri began investigating a strange event recorded by Cluster on 3 July 2001. At this time, Cluster was passing the dawn side of the Earth. In this region of space, the solar wind is sliding past the Earth's magnetopause, in roughly the same way as wind blows across the surface of an ocean.

A previous Cluster observation had shown that whirlpools of plasma can be whipped up by this configuration. Such whirlpools are known as Kelvin-Helmholtz instabilities and scientists suspected them of being the location of magnetic reconnection but no one had found any conclusive evidence that this was the case.

Cluster can recognise magnetic reconnection because of what researchers call 'rotational discontinuities'. These show up as sudden changes in the direction of the plasma flow and magnetic field. After a painstaking analysis, Nykyri found just such rotational discontinuities in the data for 3 July 2001. To be certain of her result, she reanalysed the data four times.

Then she developed a computer model to simulate the event. The computer showed that the Cluster data was only understandable if the whirlpools were causing magnetic reconnection to take place. In these reconnections, plasma was being fed down through the magnetic boundary of Earth and into the magnetosphere.

The work does not stop there. Nykyri and colleagues are now developing more sophisticated computer simulations to understand the whirlpools’ three-dimensional behaviour. "This is a very big challenge," she says, because of the additional numerical processes involved.

She also plans to search the Cluster data archive for more examples of these events.

Philippe Escoubet | alfa
Further information:
http://www.esa.int/esaSC/SEMQ289L6VE_index_0.html

More articles from Physics and Astronomy:

nachricht Innovative LED High Power Light Source for UV
22.06.2017 | Omicron - Laserage Laserprodukte GmbH

nachricht Spin liquids − back to the roots
22.06.2017 | Universität Augsburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>