Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


No matter their size black holes “feed” in the same way

Research by UK astronomers, published today in Nature (7th December 2006) reveals that the processes at work in black holes of all sizes are the same and that supermassive black holes are simply scaled up versions of small Galactic black holes.

For many years astronomers have been trying to understand the similarities between stellar-mass sized Galactic black hole systems and the supermassive black holes in active galactic nuclei (AGN).In particular, do they vary fundamentally in the same way, but perhaps with any characteristic timescales being scaled up in proportion to the mass of the black hole. If so, the researchers proposed, we could determine how AGN should behave on cosmological timescales by studying the brighter and much faster galactic systems.

Professor Ian McHardy, from the University of Southampton, heads up the research team whose findings are published today (along with colleagues Drs Elmar Koerding and Christian Knigge and Professor Rob Fender, and Dr Phil Uttley, currently working at the University of Amsterdam). Their observations were made using data from NASA’s Rossi X-ray Timing Explorer and XMM Newton’s X-ray Observatory.

Professor McHardy comments, “By studying the way in which the X-ray emission from black hole systems varies, we found that the accretion or ‘feeding’ process - where the black hole is pulling in material from its surroundings - is the same in black holes of all sizes and that AGN are just scaled-up Galactic black holes. We also found that the way in which the X-ray emission varies is strongly correlated with the width of optical emission lines from black hole systems.”

He adds, “These observations have important implications for our understanding of the different types of AGN, as classified by the width of their emission lines. Thus narrow line Seyfert galaxies, which are often discussed as being unusual, are no different to other AGN; they just have a smaller ratio of mass to accretion rate.”

The research shows that the characteristic timescale changes linearly with black hole mass, but inversely with the accretion rate (when measured relative to the maximum possible accretion rate). This result means that the accretion process is the same in black holes of all sizes. By measuring the characteristic timescale and the accretion rate, the team argues this simple relationship can help determine black hole masses where other methods are very difficult, for example in obscured AGN or in the much sought after intermediate mass black holes.

Professor McHardy continues: “Accretion of matter into a black hole produces strong X-ray emission from very close to the black hole itself. So, studying the way in which the X-ray emission varies with time, known as the X-ray lightcurves, provides one of the best ways of understanding the behaviour of black holes.

It has been known for over two decades that characteristic timescales can be seen in the X-ray lightcurves of Galactic black hole systems. The timescales are short.

Professor Ian McHardy, School of Physics and Astronomy,
University of Southampton (UK)
Tel: +44 (0)23 8059 2101. Email:
Sarah Watts, Media Relations, University of Southampton
Tel: +44 (0)23 8059 3807 Email:
Gill Ormrod – PPARC Press Office
Tel: +44 (0) 1793 442012.Mobile: 0781 8013509

Gill Ormrod | alfa
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>