Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breakthrough in magnetic devices could make computers much more powerful

06.12.2006
Scientists have created novel ‘spintronic’ devices that could point the way for the next generation of more powerful and permanent data storage chips in computers.

Physicist at the Universities of Bath, Bristol and Leeds have discovered a way to precisely control the pattern of magnetic fields in thin magnetic films, which can be used to store information.

The discovery has important consequences for the IT industry, as current technology memory storage has limited scope for develop further. The density with which information can be stored magnetically in permanent memory - hard drives - is reaching a natural limit related to the size of the magnetic particles used. The much faster silicon-chip based random access memory - RAM - in computers loses the information stored when the power is switched off.

The key advance of the recent research has been in developing ways to use high energy beams of gallium ions to artificially control the direction of the magnetic field in regions of cobalt films just a few atoms thick.

The direction of the field can be used to store information: in this case “up” or “down” correspond to the “1” or “0” that form the basis of binary information storage in computers.

Further, the physicists have demonstrated that the direction of these magnetic areas can be “read” by measuring their electrical resistance. This can be done much faster than the system for reading information on current hard drives. They propose that the magnetic state can be switched from “up” to “down” with a short pulse of electrical current, thereby fulfilling all the requirements for a fast magnetic memory cell.

Using the new technology, computers will never lose memory even during a power cut – as soon as the power is restored, the data will reappear.

Professor Simon Bending, of the University of Bath's Department of Physics, said: “The results are important as they suggest a new route for developing high density magnetic memory chips which will not lose information when the power is switched off. For the first time data will be written and read very fast using only electrical currents.”

“We’re particularly pleased as we were told in the beginning that our approach probably would not work, but we persevered and now it has definitely paid off.”

Professor Bending worked with Dr Simon Crampin, Atif Aziz and Hywel Roberts in Bath, Dr Peter Heard of the University of Bristol and Dr Chris Marrows of the University of Leeds.

Another approach to overcoming the problem of storing data permanently with rapid retrieval times is that of magnetic random access memory chips (MRAMs); prototypes of these have already been developed by several companies. However, MRAM uses the stray magnetic fields generated by wires that carry a high electrical current to switch the data state from “up” to “down”, which greatly limits the density of information storage.

In contrast, if the approach at Bath is developed commercially, this would allow the manufacture of magnetic memory chips with much higher packing densities, which can operate many times faster.

A paper written by the researchers appeared recently in the journal Physical Review Letters, entitled: Angular Dependence of Domain Wall Resistivity in Artificial Magnetic Domain Structures.

Tony Trueman | alfa
Further information:
http://www.bath.ac.uk/news/releases

More articles from Physics and Astronomy:

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>