Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How to feed a black hole

05.12.2006
A special magnetic effect, the so-called magnetorotational instability (MRI), plays a key role in the formation of stars and planetary systems. It is also what feeds the black holes in the center of galaxies. For the first time, this effect has been observed in a laboratory experiment at the Forschungszentrum Dresden-Rossendorf (FZD). These results have recently been published in “Physical Review Letters”.

Everybody remembers the picture of the hungry black hole swallowing all matter in its vicinity. Not even light has a chance to escape. However, closer inspection reveals that feeding a black hole is far from trivial. Typically, the matter around black holes has organized itself into so-called accretion disks.

And just as the Earth is not falling into the sun, the black hole cannot just scarf up the matter encircling it. Before being swallowed by the black hole, the gas in the disk has to be slowed down in order to weaken the centrifugal forces, which keep the gas rotating. But how does one put the brakes on matter in an accretion disk? Since this problem not only applies to black holes, but also to normal stars, it is of fundamental importance for the formation of cosmic structures.

Balbus and Hawley proposed the solution to this problem in 1991. They showed mathematically that stable rotating flows can be destabilized by external magnetic fields. This effect, now known as magnetorotational instability (MRI), enables sufficient angular momentum transport in accretion disks, which is essential for the mass concentration in stars and black holes.

Laboratory simulation of star formation

For approximately five years, teams throughout the world have tried to create this instability in a laboratory. Two recent papers in the journal “NATURE” (November 16, 2006) underlined the urgent need for an experimental demonstration of MRI by showing evidence that hydrodynamics alone is not capable of producing turbulence in accretion disks. At the Forschungszentrum Dresden-Rossendorf the experiment PROMISE (Potsdam Rossendorf Magnetic InStability Experiment) was set-up and carried out as a joint project between scientists from Dresden and from the Astrophysikalisches Institut Potsdam (AIP). The experimental set-up contains unusual details, such as the use of a simple wastewater tube carrying the coil that produces the vertical magnetic field. Within this tube, there are two co-axial copper cylinders with a two to one ratio in radius. As long as the rotation rate of the outer cylinder is larger than a quarter of the rate of the inner cylinder, the liquid metal flow between them is stable. The flow field is measured with ultrasonic velocity sensors. The interesting point is that this initially stable flow is destabilized by an externally applied spiral magnetic field. For the first time, this experiment allowed the observation of a magnetorotational instability in a laboratory.

The figure shows the measured axial flow as a function of the vertical position and time for three different currents in the coils. In each case, the azimuthal magnetic field is produced by an axial current of 6000 Ampères. In good agreement with numerical simulations, an upward traveling wave is observed only for certain levels of current in the coils. Moreover, the measured frequency of the traveling wave agrees well with the numerical prediction.

The results were published recently in “Physical Review Letters” and “Astrophysical Journal Letters”.

Christine Bohnet | alfa
Further information:
http://www.fzd.de
http://www.aip.de

More articles from Physics and Astronomy:

nachricht Igniting a solar flare in the corona with lower-atmosphere kindling
29.03.2017 | New Jersey Institute of Technology

nachricht NASA spacecraft investigate clues in radiation belts
28.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>