Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Catching the wave: researchers measure very short laser pulses

Scientists have perfected a technique for very accurately measuring and controlling the electromagnetic waves within some of the shortest laser pulses ever made, says new research published today. Being able to fully understand and control these laser pulses represents an important step towards using them to track and manipulate electrons in leading-edge research at the sub-atomic level.

The study, published in Nature Physics, focused on extremely short laser pulses, less than 10 femtoseconds long - a femtosecond is one million-billionth of a second. These laser pulses can allow scientists to move and control the electrons in atoms and molecules, and to understand, for example, how molecules are formed. To achieve this reliably, the pulse of electromagnetic waves emitted from the laser must be controlled and measured with a precision which, until now, has been very hard to achieve.

The team of physicists from Imperial College London attained an unprecedented level of accurate measurement by firing the femtosecond laser pulse into a sample of gas, which responds by emitting an x-ray pulse which is even shorter in duration - up to 10 times shorter than the original laser pulse. The researchers found that the spectrum of the x-ray pulse has encoded within it all the information necessary to precisely reconstruct the waveform of the original laser pulse. Through careful measurements and some 'intelligent' software designed specifically for this purpose, the researchers were therefore able, for the first time, to measure the waveform of individual femtosecond pulses.

Dr John Tisch, one of the Imperial research team, said: "This measurement technique is so accurate that we can determine the position of a peak in the pulse of electromagnetic waves from the laser with a precision of a mere 0.05 femtoseconds - in other words, 50 attoseconds. Also, the measurement can be made on individual pulses rather than by looking at the average properties of many pulses, so this is an important step forwards."

Dr Tisch explains that not only will this new technique lead to a greater ability to use short laser pulses for accurate sub-atomic level research, but it also sheds new light on the extremely short x-ray pulses emitted in response: "The x-ray pulses we used in the measurement process of our research are of great interest in their own right," he says. "They are on the attosecond timescale, which is even shorter than a femtosecond - just one billion-billionth of a second. They are a new tool for scientists to probe even faster motion than the femtosecond pulses that triggered them."

The research team have recently received a four-year £2.5 million grant from the EPSRC to take this research to the next stage. Professor Jonathan Marangos explains: "Now we've perfected this technique, we are going to look into using our accurate measurements and control of these lasers to manipulate electrons and control quantum processes."

The research was funded by a Basic Technology Programme grant from RCUK.

Laura Gallagher | alfa
Further information:

More articles from Physics and Astronomy:

nachricht Scientists discover particles similar to Majorana fermions
25.10.2016 | Chinese Academy of Sciences Headquarters

nachricht Light-driven atomic rotations excite magnetic waves
24.10.2016 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Enormous dome in central Andes driven by huge magma body beneath it

25.10.2016 | Earth Sciences

First time-lapse footage of cell activity during limb regeneration

25.10.2016 | Life Sciences

Deep down fracking wells, microbial communities thrive

25.10.2016 | Earth Sciences

More VideoLinks >>>