Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mystery of ancient astronomical calculator unveiled

30.11.2006
An international team has unravelled the secrets of a 2,000-year-old computer which could transform the way we think about the ancient world.

Professor Mike Edmunds and Dr Tony Freeth, of Cardiff University led the team who believe they have finally cracked the workings of the Antikythera Mechanism, a clock-like astronomical calculator dating from the second century BC.

Remnants of a broken wooden and bronze case containing more than 30 gears was found by divers exploring a shipwreck off the island of Antikythera at the turn of the 20th century. Scientists have been trying to reconstruct it ever since. The new research suggests it is more sophisticated than anyone previously thought.

Detailed work on the gears in the mechanism show that it was able to track astronomical movements with remarkable precision. The calculator was able to follow the movements of the moon and the sun through the Zodiac, predict eclipses and even recreate the irregular orbit of the moon. The team believe it may also have predicted the positions of some or all of the planets.

The findings suggest that Greek technology was far more advanced than previously thought. No other civilisation is known to have created anything as complicated for another thousand years.

Professor Edmunds said: "This device is just extraordinary, the only thing of its kind. The design is beautiful, the astronomy is exactly right. The way the mechanics are designed just makes your jaw drop. Whoever has done this has done it extremely well."

The team was made up of researchers from Cardiff, the National Archaeological Museum of Athens and the Universities of Athens and Thessaloniki, supported by a substantial grant from the Leverhulme Trust. They were greatly aided by Hertfordshire X-Tek, who developed powerful X-Ray computer technology to help them study the corroded fragments of the machine. Computer giant Hewlett-Packard provided imaging technology to enhance the surface details of the machine.

The mechanism is in over 80 pieces and stored in precisely controlled conditions in Athens where it cannot be touched. Recreating its workings was a difficult, painstaking process, involving astronomers, mathematicians, computer experts, script analysts and conservation experts.

The team is unveiling its full findings at a two-day international conference in Athens from November 30 to December 1 and publishing the research in the journal Nature . The researchers are now hoping to create a computer model of how the machine worked, and, in time, a full working replica. It is still uncertain what the ancient Greeks used the mechanism for, or how widespread this technology was.

Professor Edmunds said: "It does raise the question what else were they making at the time. In terms of historic and scarcity value, I have to regard this mechanism as being more valuable than the Mona Lisa."

Stephen Rouse | EurekAlert!
Further information:
http://www.cf.ac.uk

More articles from Physics and Astronomy:

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

nachricht New functional principle to generate the „third harmonic“
16.02.2017 | Laser Zentrum Hannover e.V.

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>