Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mystery of ancient astronomical calculator unveiled

30.11.2006
An international team has unravelled the secrets of a 2,000-year-old computer which could transform the way we think about the ancient world.

Professor Mike Edmunds and Dr Tony Freeth, of Cardiff University led the team who believe they have finally cracked the workings of the Antikythera Mechanism, a clock-like astronomical calculator dating from the second century BC.

Remnants of a broken wooden and bronze case containing more than 30 gears was found by divers exploring a shipwreck off the island of Antikythera at the turn of the 20th century. Scientists have been trying to reconstruct it ever since. The new research suggests it is more sophisticated than anyone previously thought.

Detailed work on the gears in the mechanism show that it was able to track astronomical movements with remarkable precision. The calculator was able to follow the movements of the moon and the sun through the Zodiac, predict eclipses and even recreate the irregular orbit of the moon. The team believe it may also have predicted the positions of some or all of the planets.

The findings suggest that Greek technology was far more advanced than previously thought. No other civilisation is known to have created anything as complicated for another thousand years.

Professor Edmunds said: "This device is just extraordinary, the only thing of its kind. The design is beautiful, the astronomy is exactly right. The way the mechanics are designed just makes your jaw drop. Whoever has done this has done it extremely well."

The team was made up of researchers from Cardiff, the National Archaeological Museum of Athens and the Universities of Athens and Thessaloniki, supported by a substantial grant from the Leverhulme Trust. They were greatly aided by Hertfordshire X-Tek, who developed powerful X-Ray computer technology to help them study the corroded fragments of the machine. Computer giant Hewlett-Packard provided imaging technology to enhance the surface details of the machine.

The mechanism is in over 80 pieces and stored in precisely controlled conditions in Athens where it cannot be touched. Recreating its workings was a difficult, painstaking process, involving astronomers, mathematicians, computer experts, script analysts and conservation experts.

The team is unveiling its full findings at a two-day international conference in Athens from November 30 to December 1 and publishing the research in the journal Nature . The researchers are now hoping to create a computer model of how the machine worked, and, in time, a full working replica. It is still uncertain what the ancient Greeks used the mechanism for, or how widespread this technology was.

Professor Edmunds said: "It does raise the question what else were they making at the time. In terms of historic and scarcity value, I have to regard this mechanism as being more valuable than the Mona Lisa."

Stephen Rouse | EurekAlert!
Further information:
http://www.cf.ac.uk

More articles from Physics and Astronomy:

nachricht DGIST develops 20 times faster biosensor
24.04.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

nachricht New quantum liquid crystals may play role in future of computers
21.04.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Early organic carbon got deep burial in mantle

25.04.2017 | Earth Sciences

A room with a view - or how cultural differences matter in room size perception

25.04.2017 | Life Sciences

Warm winds: New insight into what weakens Antarctic ice shelves

25.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>