Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mystery of ancient astronomical calculator unveiled

30.11.2006
An international team has unravelled the secrets of a 2,000-year-old computer which could transform the way we think about the ancient world.

Professor Mike Edmunds and Dr Tony Freeth, of Cardiff University led the team who believe they have finally cracked the workings of the Antikythera Mechanism, a clock-like astronomical calculator dating from the second century BC.

Remnants of a broken wooden and bronze case containing more than 30 gears was found by divers exploring a shipwreck off the island of Antikythera at the turn of the 20th century. Scientists have been trying to reconstruct it ever since. The new research suggests it is more sophisticated than anyone previously thought.

Detailed work on the gears in the mechanism show that it was able to track astronomical movements with remarkable precision. The calculator was able to follow the movements of the moon and the sun through the Zodiac, predict eclipses and even recreate the irregular orbit of the moon. The team believe it may also have predicted the positions of some or all of the planets.

The findings suggest that Greek technology was far more advanced than previously thought. No other civilisation is known to have created anything as complicated for another thousand years.

Professor Edmunds said: "This device is just extraordinary, the only thing of its kind. The design is beautiful, the astronomy is exactly right. The way the mechanics are designed just makes your jaw drop. Whoever has done this has done it extremely well."

The team was made up of researchers from Cardiff, the National Archaeological Museum of Athens and the Universities of Athens and Thessaloniki, supported by a substantial grant from the Leverhulme Trust. They were greatly aided by Hertfordshire X-Tek, who developed powerful X-Ray computer technology to help them study the corroded fragments of the machine. Computer giant Hewlett-Packard provided imaging technology to enhance the surface details of the machine.

The mechanism is in over 80 pieces and stored in precisely controlled conditions in Athens where it cannot be touched. Recreating its workings was a difficult, painstaking process, involving astronomers, mathematicians, computer experts, script analysts and conservation experts.

The team is unveiling its full findings at a two-day international conference in Athens from November 30 to December 1 and publishing the research in the journal Nature . The researchers are now hoping to create a computer model of how the machine worked, and, in time, a full working replica. It is still uncertain what the ancient Greeks used the mechanism for, or how widespread this technology was.

Professor Edmunds said: "It does raise the question what else were they making at the time. In terms of historic and scarcity value, I have to regard this mechanism as being more valuable than the Mona Lisa."

Stephen Rouse | EurekAlert!
Further information:
http://www.cf.ac.uk

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>