Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Last LHC Superconducting Main Magnet Completes the Suite at CERN

CERN took delivery of the last superconducting main magnet for the Large Hadron Collider (LHC) on 27 November. This completes the full set of 1624 main magnets required to build the world’s largest and most powerful particle accelerator.

Constructing this gigantic scientific machine is a technological and logistical challenge for CERN and its industrial partners. The LHC accelerator was initially conceived 22 years ago and approved for build 10 years later. Its realisation involved more than 200 manufacturers around the world, producing vast quantities of complex components to tight precision.

The LHC is located inside a circular underground tunnel of 27km circumference approximately 100 metres beneath Switzerland and France. When fully operational, it will reach seven times more energy than the most powerful particle accelerator currently in use. Scientists will use the LHC to recreate the conditions just after the Big Bang, by colliding two beams of protons travelling in opposite directions at close to the speed of light.

Thousands of magnets of different varieties and sizes will be used to navigate the beams of particles around the accelerator. These include the superconducting main magnets, of which 1232 ‘dipole’ magnets of 15 metre lengths are used to guide the beams, and 392 ‘quadrupole’ magnets of 5 to 7 metre lengths are used to focus the beams.

“The present achievement is an essential milestone. The successful completion of all main magnets for the LHC accelerator results from the dedication and efficient collaboration of teams from CERN, other laboratories and many European industries. This is a promising step towards achieving the three pillars of the LHC – the accelerator, experiments, and computing – and the ultimate goal of scientific discoveries,” summarised CERN’s Director General Robert Aymar.

Turning a scientific plan on paper into reality is an immensely complex task. The design of the magnets presented one of the most important technological challenges for the LHC. A high magnetic field is required to bend the path of the particle beam around the accelerator. To achieve this, the magnets must perform at the most efficient ‘superconducting’ state without loss of energy, which requires chilling to a temperature of -271°C throughout the LHC’s operation – this is even colder than outer space!

CERN led the design and production processes of the dipole magnets, assembled by three European partners: Babcock Noell GmbH (Germany), Alstom MSA-Jeumont (a French consortium), and Ansaldo Superconduttori (Italy). “We introduced new techniques that were not yet standard in industry, including a new welding method for special stainless steel. We worked closely with industrial partners to adapt state of the art technologies for large-scale productions, while maintaining stringent standards and economic efficiency,” said Lucio Rossi, head of the Magnets, Cryostats and Superconductors group at CERN. Lyn Evans, LHC project leader, added, “This is the end of more than six years of industrial production under very tight quality control. It has required a very close collaboration between the magnet manufacturers and CERN.” The quadrupole main magnets were designed by CEA-DAPNIA laboratory (France), within the framework of the French special contribution to the LHC, and assembled by ACCEL Instruments (Germany) with similar challenges.

CERN’s industrial partners have also benefited from the project to build the LHC. The processes of research and development, coupled with the knowledge transfer from expertise only found in a world-class particle physics laboratory, have resulted in innovations they can reapply to other products in industry, from magnetic resonance imaging (MRI) machines to car manufacturing.

Assembly processes to complete the LHC are expected to finish by mid-2007, in preparation for the start-up in November 2007. The LHC will be central to the next generation of experiments at CERN, enabling scientific investigations that have never been possible before. A new frontier of knowledge will shed light on the unresolved questions of science, such as the search for the elusive Higgs boson to explain the origin of particle mass, investigating the make up of dark matter, and the existence of extra dimensions of space.

James Gillies | alfa
Further information:

More articles from Physics and Astronomy:

nachricht Gamma ray camera offers new view on ultra-high energy electrons in plasma
28.10.2016 | American Physical Society

nachricht Scientists measure how ions bombard fusion device walls
28.10.2016 | American Physical Society

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>