Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronomers find First ever Gamma Ray Clock

27.11.2006
Astronomers using the H.E.S.S. telescopes have discovered the first ever modulated signal from space in Very High Energy Gamma Rays – the most energetic such signal ever observed.

Regular signals from space have been known since the 1960s, when the first radio pulsar (nicknamed Little Green Men-1 for its regular nature) was discovered. This is the first time a signal has been seen at such high energies – 100,000 times higher than previously known - and is reported today (24th November) in the Journal Astronomy and Astrophysics.

The signal comes from a system called LS 5039 which was discovered by the H.E.S.S. team in 2005. LS5039 is a binary system formed of a massive blue star (20 times the mass of the Sun) and an unknown object, possibly a black hole. The two objects orbit each other at very short distance, varying between only 1/5 and 2/5 of the separation of the Earth from the Sun, with one orbit completed every four days.

“The way in which the gamma ray signal varies makes LS5039 a unique laboratory for studying particle acceleration near compact objects such as black holes.” Explained Dr Paula Chadwick from the University of Durham, a British team member of H.E.S.S.

Different mechanisms can affect the gamma-ray signal that reaches Earth and by seeing how the signal varies, astronomers can learn a great deal about binary systems such as LS 5039 and also the effects that take place near black holes.

As it dives towards the blue-giant star, the compact companion is exposed to the strong stellar 'wind' and the intense light radiated by the star, allowing on the one hand particles to be accelerated to high energies, but at the same time making it increasingly difficult for gamma rays produced by these particles to escape, depending on the orientation of the system with respect to us. The interplay of these two effects is at the root of the complex modulation pattern.

The gamma-ray signal is strongest when the compact object (thought to be a black hole) is in front of the star as seen from Earth and weakest when it is behind the star. The gamma rays are thought to be produced as particles which are accelerated in the star’s atmosphere (the stellar wind) interact with the compact object. The compact object acts as a probe of the star’s environment, showing how the magnetic field varies depending on distance from the star by mirroring those changes in the gamma ray signal.

In addition, a geometrical effect adds a further modulation to the flux of gamma-rays observed from the Earth. We know since Einstein derived his famous equation (E=mc²) that matter and energy are equivalent, and that pairs of particles and antiparticles can mutually annihilate to give light. Symmetrically, when very energetic gamma rays meet the light from a massive star, they can be converted into matter (an electron-positron pair in this case). So, the light from the star resembles, for gamma rays, a fog which masks the source of the gamma rays when the compact object is behind the star, partially eclipsing the source. “The periodic absorption of gamma-rays is a nice illustration of the production of matter-antimatter pairs by light, though it also obscures the view to the particle accelerator in this system” (Guillaume Dubus, Astrophysical Laboratory of the Grenoble Observatory, LAOG).

Julia Maddock | alfa
Further information:
http://www.pparc.ac.uk

More articles from Physics and Astronomy:

nachricht New NASA study improves search for habitable worlds
20.10.2017 | NASA/Goddard Space Flight Center

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>