Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Delft University of Technology makes world's smallest piano wire

27.11.2006
Researchers from Delft University of Technology and FOM Foundation have successfully made and 'tuned' the world's smallest piano wire.

The wires are made of carbon nanotubes that measure approximately 2 nanometers in diameter. The researchers have published an article on the subject this week in the scientific journal Nano Letters.

The researchers at the Kavli Institute of Nanoscience Delft and the FOM Foundation (Fundamental Research on Matter) made the small wires from carbon nanotubes, measuring approximately 1 micrometer long and approximately 2 nanometres in diameter. The tubes were attached to electrodes and initially placed above a layer of silicon oxide. This layer of silicon oxide was then partially etched away with acid, which caused the tubes to detach and hang.

A layer of silicon is contained beneath the silicon oxide. A strong and frequently variable alternating current is applied to this layer, which causes the hanging nanotubes to vibrate. The suspended tube is alternately attracted and repelled. The largest measured deviation for one tube was 8 nanometres. The distance of the nanotubes to the layer of silicon influences the electrical capacity to the layer of silicon. The movement of the nanowires is derived from these changes in capacity.

When the frequency of the applied current approaches the level of the suspended tube's eigenfrequency, it begins to vibrate more powerfully. The order of magnitude of these frequencies amounts to a few tens of MHz. By varying the strength and frequency of the applied current, the research group led by Professor Herre van der Zant succeeded in transposing the wire from a freely suspended state, to a state in which it is taut and vibrates. Van der Zant: "And as such it is like tightening a piano wire or guitar string. You can, as it were, tune the wire."

The Delft researchers have developed a model that can satisfactorily predict the vibrations of the nanotubes. The vibrating nanotubes are not only interesting from a scientific standpoint; in future they can also be used for other specific applications. Van der Zant identifies one possibility as a hypersensitive mass sensor. "The nanotubes are extremely lightweight. If you suspend something from the tube that is also extremely lightweight, like a virus, then the change in mass is rendered by a different vibration pattern. From this, you can determine the size of the extra mass and deduce if it involves the virus concerned." The vibrating tubes may also be of interest for GSM-related applications (which now use resonators that vibrate in the GHz-field.)

Frank Nuijens | alfa
Further information:
http://www.tudelft.nl
http://dx.doi.org/10.1021/nl062206p

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>