Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New simulator is next step on the road to developing quantum computers

27.11.2006
Scientists have proven theoretically a novel way to build a simulator that can recreate the way atoms and particles behave in a quantum system, says research published today.

The proposed simulator is unique because it could let researchers control how individual particles move and interact with each other. This ability to control individual parts of a quantum system is key to the development of powerful quantum computers in the future.

The term ‘quantum system’ is used to describe a system which is governed by the laws of quantum mechanics, as opposed to being governed by the classical laws of physics such as mechanics, gravity and Einstein’s general theory of relativity. Quantum mechanics comes into play when systems are the size of atoms or smaller, because on this very small scale the conventional laws of mechanics no longer apply. Quantum computing devices of the future, which have not yet been successfully created, will rely on scientists harnessing quantum behaviour to create systems that can far exceed the speed and processing capabilities of current silicon-based computers.

The study, published in Nature Physics, shows that a device can be built which is able to simulate the behaviour of atoms and other particles according to the laws of quantum physics. The proposed simulator would consist of atoms and photons – particles of light – in an array of very small silicon cavities, measuring just 50 micrometres across. The researchers show that the atoms and photons inside the cavities would form a strongly-interacting many-body system, with photons jumping from cavity to cavity, and at the same time being scattered off each other – all examples of quantum behaviour.

Dr Michael J Hartmann, who led the study along with his colleagues Mr. Fernando Brandão and Professor Martin Plenio from Imperial College London’s Department of Physics and Institute for Mathematical Sciences, said: “Our research has successfully shown that it is possible to create a simulation of a system governed by the laws of quantum physics, in which scientists could have control of individual particles. This is a key theoretical discovery because in order to build the quantum computers of the future - which harness the power of atoms to perform calculations billions of times faster than normal computers – we will need to be able to manipulate quantum systems in this way.”

Professor Plenio adds: “In the short term the simulator could be used to test the capabilities of materials at the atomic and sub-atomic level when quantum physics governs atoms’ behaviour. In the very long run we anticipate that these kinds of simulators could potentially be used to create new materials with capabilities and characteristics which do not occur naturally.”

Laura Gallagher | alfa
Further information:
http://www.imperial.ac.uk

More articles from Physics and Astronomy:

nachricht Squeezing light at the nanoscale
18.06.2018 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht The Fraunhofer IAF is a »Landmark in the Land of Ideas«
15.06.2018 | Fraunhofer-Institut für Angewandte Festkörperphysik IAF

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Novel method for investigating pore geometry in rocks

18.06.2018 | Earth Sciences

Diamond watch components

18.06.2018 | Process Engineering

New type of photosynthesis discovered

18.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>