Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Public needs better understanding of nuclear safety

24.11.2006
The public needs to have a better understanding of the safety of nuclear radiation, an Oxford physicist has claimed. While the public is happy to accept the benefits of high doses of radiation in medicine, fears of radiation associated with a civil nuclear power programme are disproportionate.

Wade Allison, Professor of Physics at Oxford University, argues that this public apprehension of anything nuclear, which was fostered during the Cold War, is not justifiable and, with the onset of climate change, nuclear radiation needs to be assessed in more realistic terms when difficult choices between power sources have to be made.

Professor Allison said: ‘Current environmental regulations that attempt to keep variations in radiation exposure to a fraction of the natural level are over-cautions by a factor of about 500 to 1000. This factor is unnecessary and unaffordable. In no other field is such a safety factor applied.’

In his lecture, ‘How dangerous is ionising radiation?’ given on 24 November 2006 as part of the mainstream Colloquium series in the Oxford Physics Department, he shows that in fact there is good evidence to demonstrate that life has evolved immunity to the dangers of radiation up to a certain threshold. Below this, any damage is completely repaired.

A value for this threshold may be determined from the health records of the survivors of Hiroshima and Nagasaki, for example. The existence of this threshold, or non-linearity as he describes it, is supported by data on the acute victims of Chernobyl, on laboratory experiments, on radon in homes, on the recovery of patients receiving radiotherapy – indeed, without this non-linearity, current radiotherapy treatment would not be effective.

Professor Allison argues that this threshold behaviour is the norm, describing, for example, how people recover completely from minor cuts and bruises, loss of blood, body temperature excursions and so on, up to a certain threshold. Nuclear radiation, or ionising radiation as he more correctly describes it, occurs naturally in the environment, and mankind has adapted to deal with it by developing repair mechanisms that prevent long-term damage.

Professor Allison said: ‘Members of the public tolerate radiation exposures for their own health which are 1000 times higher per day than those that are currently deemed barely acceptable in the environment per year. A far greater tolerance to radiation in the environment is needed if the health of the planet is to be treated with the same respect and judgment as personal health.’

Barbara Hott | alfa
Further information:
http://www.physics.ox.ac.uk/nuclearsafety

More articles from Physics and Astronomy:

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>