Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MIND THE GAP A study of hydrophobic interfaces provides new information on the hydrophobic water gap

23.11.2006
Researchers have found a gap between water and a water-repelling surface that can give new insight into the way water and oil separate.

By using high-energy X-rays at the ESRF, an international team defined the size and characteristics of this gap. The knowledge of the structure of a hydrophobic interface is important because they are crucial in biological systems, and can give insight in protein folding and stability. The researchers publish their results this week in PNAS Early Online Edition.

The repulsion of water is a phenomenon present in many aspects of our lives. Detergent molecules made up of components attracted to water (hydrophilic) and others that repel it (hydrophobic). Proteins also use the interaction with water to assemble into complexes. However, studying hydrophobic structures and what occurs when they encounter water is not entirely straightforward as it is influenced by certain factors. Early studies of the gap formed between water and a hydrophobic surface did not show a coherent picture.

Scientists from the Max Planck Institute for Metals Research (Germany), the University of South Australia (Adelaide) and the ESRF carried out experiments on silicon wafers covered by a water-repulsive layer at the surface. The wafers were then immersed in water by a special cell. Studies of the water structure at the interface of the hydrophobic layer confirmed that a gap is formed between the layer and water and that its size is the diameter of a water molecule, somewhere between 0.1 and 0.5 nanometer. The integrated density deficit at the interface amounts to half a monolayer of water molecules.

The scientists did further experiments in order to test the influence of gas, which is naturally present in water, on the hydrophobic water gap. During all their experiments they kept the water ultra clean (unlike water in nature) and after the gas was introduced into the cell until saturation. The result shows that, contrary to previous reports, gas does not play a role in the structure of water at flat interfaces.

This is the first time that high energy synchrotron X-rays have been used as a tool to measure the properties of this gap. "Some teams have used neutrons, but they didn't have enough resolution, after all, the gap is extremely small and difficult to track," explained Harald Reichert, the paper’s corresponding author. Despite the superior quality of the X-ray beam, the experiment was still a challenge: the water-repellent layer on the silicon wafer can survive only 50 seconds under the beam, so measurements had to be completed very quickly.

The next step for the team is to produce porous structures and study the properties of water at confined pore interfaces. "These studies will increase our knowledge of how water behaves in different environments. The structure of water in these environments is still, somewhat a mystery to us, despite the fact that our world is surrounded by water", declared Reichert.

Montserrat Capellas | alfa
Further information:
http://www.esrf.fr/news/pressreleases/gap

More articles from Physics and Astronomy:

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

nachricht New functional principle to generate the „third harmonic“
16.02.2017 | Laser Zentrum Hannover e.V.

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>