Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


MIND THE GAP A study of hydrophobic interfaces provides new information on the hydrophobic water gap

Researchers have found a gap between water and a water-repelling surface that can give new insight into the way water and oil separate.

By using high-energy X-rays at the ESRF, an international team defined the size and characteristics of this gap. The knowledge of the structure of a hydrophobic interface is important because they are crucial in biological systems, and can give insight in protein folding and stability. The researchers publish their results this week in PNAS Early Online Edition.

The repulsion of water is a phenomenon present in many aspects of our lives. Detergent molecules made up of components attracted to water (hydrophilic) and others that repel it (hydrophobic). Proteins also use the interaction with water to assemble into complexes. However, studying hydrophobic structures and what occurs when they encounter water is not entirely straightforward as it is influenced by certain factors. Early studies of the gap formed between water and a hydrophobic surface did not show a coherent picture.

Scientists from the Max Planck Institute for Metals Research (Germany), the University of South Australia (Adelaide) and the ESRF carried out experiments on silicon wafers covered by a water-repulsive layer at the surface. The wafers were then immersed in water by a special cell. Studies of the water structure at the interface of the hydrophobic layer confirmed that a gap is formed between the layer and water and that its size is the diameter of a water molecule, somewhere between 0.1 and 0.5 nanometer. The integrated density deficit at the interface amounts to half a monolayer of water molecules.

The scientists did further experiments in order to test the influence of gas, which is naturally present in water, on the hydrophobic water gap. During all their experiments they kept the water ultra clean (unlike water in nature) and after the gas was introduced into the cell until saturation. The result shows that, contrary to previous reports, gas does not play a role in the structure of water at flat interfaces.

This is the first time that high energy synchrotron X-rays have been used as a tool to measure the properties of this gap. "Some teams have used neutrons, but they didn't have enough resolution, after all, the gap is extremely small and difficult to track," explained Harald Reichert, the paper’s corresponding author. Despite the superior quality of the X-ray beam, the experiment was still a challenge: the water-repellent layer on the silicon wafer can survive only 50 seconds under the beam, so measurements had to be completed very quickly.

The next step for the team is to produce porous structures and study the properties of water at confined pore interfaces. "These studies will increase our knowledge of how water behaves in different environments. The structure of water in these environments is still, somewhat a mystery to us, despite the fact that our world is surrounded by water", declared Reichert.

Montserrat Capellas | alfa
Further information:

More articles from Physics and Astronomy:

nachricht First results of NSTX-U research operations
26.10.2016 | DOE/Princeton Plasma Physics Laboratory

nachricht Scientists discover particles similar to Majorana fermions
25.10.2016 | Chinese Academy of Sciences Headquarters

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>