Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Big magnet ready to face the big questions of the universe

22.11.2006
World's largest superconducting magnet switches on

The largest superconducting magnet ever built has successfully been powered up to its operating conditions at the first attempt. Called the Barrel Toroid because of its shape, this magnet is a vital part of ATLAS, one of the major particle detectors being prepared to take data at CERN's Large Hadron Collider (LHC), the new particle accelerator scheduled to turn on in November 2007.

ATLAS will help scientists probe the big questions of the Universe – what happened in the moments after the Big Bang? Why does the material in the Universe behave the way it does? Why is the Universe we can see made of matter rather than anti-matter? UK scientists are a key part of the ATLAS collaboration and Dr Richard Nickerson, UK ATLAS project leader, who is from the University of Oxford welcomed this important milestone "The toroidal magnets are critical to enabling us to measure the muons (a type of particle) produced in interactions. These are vital to a lot of the physics we want to study, so the successful test of the magnets is a great step forward."

The ATLAS Barrel Toroid consists of eight superconducting coils, each in the shape of a round-cornered rectangle, 5m wide, 25m long and weighing 100 tonnes, all aligned to millimetre precision. It will work together with other magnets in ATLAS to bend the paths of charged particles produced in collisions at the LHC, enabling important properties to be measured. Unlike most particle detectors, the ATLAS detector does not need large quantities of metal to contain the field because the field is contained within a doughnut shape defined by the coils. This allows the ATLAS detector to be very large, which in turn increases the precision of the measurements it can make.

At 46m long, 25m wide and 25m high, ATLAS is the largest volume detector ever constructed for particle physics. Among the questions ATLAS will focus on are why particles have mass, what the unknown 96% of the Universe is made of, and why Nature prefers matter to antimatter. Some 1800 scientists from 165 universities and laboratories (including 12 from the UK) representing 35 countries are building the ATLAS detector and preparing to take data next year.

The ATLAS Barrel Toroid was first cooled down over a six-week period in July-August to reach –269oC. It was then powered up step-by-step to higher and higher currents, reaching 21 thousand amps for the first time during the night of 9 November. This is 500 amps above the current needed to produce the nominal magnetic field. Afterwards, the current was switched off and the stored magnetic energy of 1.1 GJ, the equivalent of about 10 000 cars travelling at 70km/h, has now been safely dissipated, raising the cold mass of the magnet to –218oC.

"We can now say that the ATLAS Barrel Toroid is ready for physics," said Herman ten Kate, ATLAS magnet system project leader.

The ATLAS Barrel Toroid is financed by the ATLAS Collaboration and has been built through close collaboration between the French CEA-DAPNIA laboratory (originator of the magnet's design), Italy's INFN-LASA laboratory and CERN. Components have been contributed in-kind by national funding agencies from industries in France (CEA), Italy, Germany (BMBF), Spain, Sweden, Switzerland, Russia, and the Joint Institute for Nuclear Research (JINR), an international organization based near Moscow. The final integration and test of the coils at CERN, as well as assembly of the toroid in the ATLAS underground cavern, was done with JINR providing most of the manpower and heavy tooling.

Julia Maddock | EurekAlert!
Further information:
http://www.pparc.ac.uk

More articles from Physics and Astronomy:

nachricht Space radiation won't stop NASA's human exploration
18.10.2017 | NASA/Johnson Space Center

nachricht Study shows how water could have flowed on 'cold and icy' ancient Mars
18.10.2017 | Brown University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>