Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tekniker installs Nasmyth rotators in the Canary Islands Great Telescope

22.11.2006
The biggest contract project in the history of Tekniker is in its final stage of installation. Effectively, over a three-week period in late Spring, our technical team carried out the installation and fitting of the Nasmyth rotators (in-house design and manufacture) to the Great Telescope located on the Canary Islands.

The telescope is located at almost 3,000 metres altitude, in the Roque de los Muchachos of La Palma island. The installation involved highly delicate manoeuvres, given the great size and weight of the structures being handled as well as the complexity and vulnerability of its structure and instrumentation.

The procedure was to lift the rotators, hoisting them on to the platform, fit them into their definitive position and align them with the optical axes of the telescope.

The Canary Islands Great Telescope is located in one of the three best places on the planet for quality of astronomic observations, due to their clear skies. Its primary mirror is made up of a mosaic of 36 hexagonal vitroceramic elements that fit together in such a way that it they form a surface area equivalent to that of a 10.4 m diameter mirror that is parabolic and has a circular perimeter. Thus, next year when it is inaugurated, the “Grantecan” will be the telescope with the largest segmented primary mirror in the world.

The Nasmyth rotators developed by Tekniker are two twinned systems, fitted either side of the main structure of the telescope, the aim of which being to move and position the instrument with precision in response to movements of stars. In mechanical terms, the Nasmyth rotators of the GTC telescope are made up of a main support structure and a mobile structure of two bearings, the first being a reference and anchor for the various instruments integrated in the installation, the second bearing on which the capture and guidance system of the telescope is supported. Both structures are united by means of a a set of roll cross bearings that enable a very high level of smoothness of rotation while providing high rigidity to the structure. The operation of the rotators is carried out by direct actuators based on synchronous linear motors. These motors are made up of 20 independent stators inserted in the fixed support structure and a rotor of permanent magnets located on the mobile structure. The measurement of the angular position, which is, at the same time, a feedback system for the links between speed and position, is undertaken by means of a encoded tape fixed to the mobile structure and six reader heads inserted in the fixed structure. The mobile structure itself carries out, moreover, the rotation of the cables and conductors that are necessary for both the instruments of observation and the system of capture and guidance system of the telescope.

This venture places Tekniker amongst the select few suppliers of mecatronics who are able to take on projects of this level of exigency and risk. All of this has been made possible by the proven capacity of Tekniker in technologies such as the magnetic positioning and displacement, control, precision and metrology of large structures.

Over the next few months and when all the various activities around the Great Telescope of the Canaries allow, our technical personnel will put their final touches to the work, the fitting and plaiting of the cables and placing them in a drag chain and the final acceptance trials before putting the rotators into operation. After a few more months, humanity will have a great new eye open to the Universe and its correct functioning will be in part due to Basque technology.

Irati Kortabitarte | alfa
Further information:
http://www.elhuyar.com
http://www.basqueresearch.com/berria_irakurri.asp?Gelaxka=1_1&Berri_Kod=1090&hizk=I

More articles from Physics and Astronomy:

nachricht New NASA study improves search for habitable worlds
20.10.2017 | NASA/Goddard Space Flight Center

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>