Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Tekniker installs Nasmyth rotators in the Canary Islands Great Telescope

The biggest contract project in the history of Tekniker is in its final stage of installation. Effectively, over a three-week period in late Spring, our technical team carried out the installation and fitting of the Nasmyth rotators (in-house design and manufacture) to the Great Telescope located on the Canary Islands.

The telescope is located at almost 3,000 metres altitude, in the Roque de los Muchachos of La Palma island. The installation involved highly delicate manoeuvres, given the great size and weight of the structures being handled as well as the complexity and vulnerability of its structure and instrumentation.

The procedure was to lift the rotators, hoisting them on to the platform, fit them into their definitive position and align them with the optical axes of the telescope.

The Canary Islands Great Telescope is located in one of the three best places on the planet for quality of astronomic observations, due to their clear skies. Its primary mirror is made up of a mosaic of 36 hexagonal vitroceramic elements that fit together in such a way that it they form a surface area equivalent to that of a 10.4 m diameter mirror that is parabolic and has a circular perimeter. Thus, next year when it is inaugurated, the “Grantecan” will be the telescope with the largest segmented primary mirror in the world.

The Nasmyth rotators developed by Tekniker are two twinned systems, fitted either side of the main structure of the telescope, the aim of which being to move and position the instrument with precision in response to movements of stars. In mechanical terms, the Nasmyth rotators of the GTC telescope are made up of a main support structure and a mobile structure of two bearings, the first being a reference and anchor for the various instruments integrated in the installation, the second bearing on which the capture and guidance system of the telescope is supported. Both structures are united by means of a a set of roll cross bearings that enable a very high level of smoothness of rotation while providing high rigidity to the structure. The operation of the rotators is carried out by direct actuators based on synchronous linear motors. These motors are made up of 20 independent stators inserted in the fixed support structure and a rotor of permanent magnets located on the mobile structure. The measurement of the angular position, which is, at the same time, a feedback system for the links between speed and position, is undertaken by means of a encoded tape fixed to the mobile structure and six reader heads inserted in the fixed structure. The mobile structure itself carries out, moreover, the rotation of the cables and conductors that are necessary for both the instruments of observation and the system of capture and guidance system of the telescope.

This venture places Tekniker amongst the select few suppliers of mecatronics who are able to take on projects of this level of exigency and risk. All of this has been made possible by the proven capacity of Tekniker in technologies such as the magnetic positioning and displacement, control, precision and metrology of large structures.

Over the next few months and when all the various activities around the Great Telescope of the Canaries allow, our technical personnel will put their final touches to the work, the fitting and plaiting of the cables and placing them in a drag chain and the final acceptance trials before putting the rotators into operation. After a few more months, humanity will have a great new eye open to the Universe and its correct functioning will be in part due to Basque technology.

Irati Kortabitarte | alfa
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>