Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronauts to get Norwegian indoor climate check

22.11.2006
Under the terms of a contract with ESA, the European Space Agency, SINTEF and the German company Kayser-Threde GmbH have joined forces to develop an advanced system for identifying and measuring gases in indoor environments.

The new measurement technique is also suitable for a wide range of applications on Earth.

The system is currently in the process of being handed over to NASA. Plans are for the US space organisation to take the unit up to the ISS next summer, using an unmanned cargo spaceship.

After a ten-day test phase, the Norwegian-German system will be trialled in the ISS, at first for six months, in order to provide useful data on gas emissions. If the system passes its tests, the next version will become a regular part of the space station’s monitoring equipment.

Protecting astronauts

The owners of the ISS wish to prevent its inhabitants from breathing in gases that are either unpleasant, toxic or carcinogenic. Just as on Earth, gases will evaporate out of walls, interiors and equipment. Other gases may come from leaks or overheating, while the human body also produces gases.

And out in space, we cannot simply open a window! In the space station, the astronauts are completely dependent on the air purification system.

Through the needle’s eye

Equipment for measuring gases is installed on board the ISS as a matter of safety, so that the astronauts can quickly see whether the air purification system has failed or a leak has occurred, and put countermeasures into effect. But at present, only a few gases can be measured rapidly and frequently. The time taken to identify other gases is measured in hours, while some can only be measured after samples of the air have been returned to earth.

Experts from industry and scientists have been competing to develop the next generation of measuring equipment. Today, the leading candidate for use on board the ISS is the new system from SINTEF and the German company Kayser-Threde GmbH.

“World championship” in gas measurement

A few years ago, in order to provide a foundation for the choice of new measurement technology, NASA organised an unofficial “World Championship” in gas measurement, in which the Norwegian-German solution went right to the top.

The system gained maximum score for its ability to recognise gases in NASA’s text mixtures and to indicate their concentrations. Since then, the Norwegian and German partners have improved the sensitivity of the system even more, and they have produced a more compact, lighter version which is more suitable for the weight and space limitations inherent in space-station deployment.

Works by “seeing” gases

The system, which goes under the name of ANITA, works rapidly and completely automatically and presents its results in real time. During the upcoming trials, however, the astronauts will not have direct access to the results, as all the data will be transmitted via NASA and further processed by SINTEF.

The solution is based on optical technology. The system “sees” gases with the aid of a beam of infrared radiation. SINTEF’s primary contribution has been in the methods used by the system to interpret its own optical measurements.

According to SINTEF’s project manager Atle Honne, this is a field that has demanded a great deal of new development efforts. Honne is proud of the results. Ground-based tests have shown that the system is capable of discriminating between at least 32 different gases in all sorts of mixtures.

The main point of the space station trials is to demonstrate that the system is also capable of functioning under “space-ship” conditions. That NASA wants such a long period of testing is due to the fact that the organisation want to acquire better air-quality data for its space station.

Earth-bound benefits too

SINTEF scientist Atle Honne explains that the new measurement technique is also suitable for a wide range of applications on Earth, which is the main reason for SINTEF’s decision to go in for this project. “We can envisage a whole series of applications, from monitoring industrial processes to use on board submarines and other sites where it is vital to control indoor climate”, he says.

By Svein Tønseth

Aase Dragland | alfa
Further information:
http://www.sintef.no

More articles from Physics and Astronomy:

nachricht Tiny lasers from a gallery of whispers
20.09.2017 | American Institute of Physics

nachricht New quantum phenomena in graphene superlattices
19.09.2017 | Graphene Flagship

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>