Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Astronauts to get Norwegian indoor climate check

Under the terms of a contract with ESA, the European Space Agency, SINTEF and the German company Kayser-Threde GmbH have joined forces to develop an advanced system for identifying and measuring gases in indoor environments.

The new measurement technique is also suitable for a wide range of applications on Earth.

The system is currently in the process of being handed over to NASA. Plans are for the US space organisation to take the unit up to the ISS next summer, using an unmanned cargo spaceship.

After a ten-day test phase, the Norwegian-German system will be trialled in the ISS, at first for six months, in order to provide useful data on gas emissions. If the system passes its tests, the next version will become a regular part of the space station’s monitoring equipment.

Protecting astronauts

The owners of the ISS wish to prevent its inhabitants from breathing in gases that are either unpleasant, toxic or carcinogenic. Just as on Earth, gases will evaporate out of walls, interiors and equipment. Other gases may come from leaks or overheating, while the human body also produces gases.

And out in space, we cannot simply open a window! In the space station, the astronauts are completely dependent on the air purification system.

Through the needle’s eye

Equipment for measuring gases is installed on board the ISS as a matter of safety, so that the astronauts can quickly see whether the air purification system has failed or a leak has occurred, and put countermeasures into effect. But at present, only a few gases can be measured rapidly and frequently. The time taken to identify other gases is measured in hours, while some can only be measured after samples of the air have been returned to earth.

Experts from industry and scientists have been competing to develop the next generation of measuring equipment. Today, the leading candidate for use on board the ISS is the new system from SINTEF and the German company Kayser-Threde GmbH.

“World championship” in gas measurement

A few years ago, in order to provide a foundation for the choice of new measurement technology, NASA organised an unofficial “World Championship” in gas measurement, in which the Norwegian-German solution went right to the top.

The system gained maximum score for its ability to recognise gases in NASA’s text mixtures and to indicate their concentrations. Since then, the Norwegian and German partners have improved the sensitivity of the system even more, and they have produced a more compact, lighter version which is more suitable for the weight and space limitations inherent in space-station deployment.

Works by “seeing” gases

The system, which goes under the name of ANITA, works rapidly and completely automatically and presents its results in real time. During the upcoming trials, however, the astronauts will not have direct access to the results, as all the data will be transmitted via NASA and further processed by SINTEF.

The solution is based on optical technology. The system “sees” gases with the aid of a beam of infrared radiation. SINTEF’s primary contribution has been in the methods used by the system to interpret its own optical measurements.

According to SINTEF’s project manager Atle Honne, this is a field that has demanded a great deal of new development efforts. Honne is proud of the results. Ground-based tests have shown that the system is capable of discriminating between at least 32 different gases in all sorts of mixtures.

The main point of the space station trials is to demonstrate that the system is also capable of functioning under “space-ship” conditions. That NASA wants such a long period of testing is due to the fact that the organisation want to acquire better air-quality data for its space station.

Earth-bound benefits too

SINTEF scientist Atle Honne explains that the new measurement technique is also suitable for a wide range of applications on Earth, which is the main reason for SINTEF’s decision to go in for this project. “We can envisage a whole series of applications, from monitoring industrial processes to use on board submarines and other sites where it is vital to control indoor climate”, he says.

By Svein Tønseth

Aase Dragland | alfa
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>