Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronauts to get Norwegian indoor climate check

22.11.2006
Under the terms of a contract with ESA, the European Space Agency, SINTEF and the German company Kayser-Threde GmbH have joined forces to develop an advanced system for identifying and measuring gases in indoor environments.

The new measurement technique is also suitable for a wide range of applications on Earth.

The system is currently in the process of being handed over to NASA. Plans are for the US space organisation to take the unit up to the ISS next summer, using an unmanned cargo spaceship.

After a ten-day test phase, the Norwegian-German system will be trialled in the ISS, at first for six months, in order to provide useful data on gas emissions. If the system passes its tests, the next version will become a regular part of the space station’s monitoring equipment.

Protecting astronauts

The owners of the ISS wish to prevent its inhabitants from breathing in gases that are either unpleasant, toxic or carcinogenic. Just as on Earth, gases will evaporate out of walls, interiors and equipment. Other gases may come from leaks or overheating, while the human body also produces gases.

And out in space, we cannot simply open a window! In the space station, the astronauts are completely dependent on the air purification system.

Through the needle’s eye

Equipment for measuring gases is installed on board the ISS as a matter of safety, so that the astronauts can quickly see whether the air purification system has failed or a leak has occurred, and put countermeasures into effect. But at present, only a few gases can be measured rapidly and frequently. The time taken to identify other gases is measured in hours, while some can only be measured after samples of the air have been returned to earth.

Experts from industry and scientists have been competing to develop the next generation of measuring equipment. Today, the leading candidate for use on board the ISS is the new system from SINTEF and the German company Kayser-Threde GmbH.

“World championship” in gas measurement

A few years ago, in order to provide a foundation for the choice of new measurement technology, NASA organised an unofficial “World Championship” in gas measurement, in which the Norwegian-German solution went right to the top.

The system gained maximum score for its ability to recognise gases in NASA’s text mixtures and to indicate their concentrations. Since then, the Norwegian and German partners have improved the sensitivity of the system even more, and they have produced a more compact, lighter version which is more suitable for the weight and space limitations inherent in space-station deployment.

Works by “seeing” gases

The system, which goes under the name of ANITA, works rapidly and completely automatically and presents its results in real time. During the upcoming trials, however, the astronauts will not have direct access to the results, as all the data will be transmitted via NASA and further processed by SINTEF.

The solution is based on optical technology. The system “sees” gases with the aid of a beam of infrared radiation. SINTEF’s primary contribution has been in the methods used by the system to interpret its own optical measurements.

According to SINTEF’s project manager Atle Honne, this is a field that has demanded a great deal of new development efforts. Honne is proud of the results. Ground-based tests have shown that the system is capable of discriminating between at least 32 different gases in all sorts of mixtures.

The main point of the space station trials is to demonstrate that the system is also capable of functioning under “space-ship” conditions. That NASA wants such a long period of testing is due to the fact that the organisation want to acquire better air-quality data for its space station.

Earth-bound benefits too

SINTEF scientist Atle Honne explains that the new measurement technique is also suitable for a wide range of applications on Earth, which is the main reason for SINTEF’s decision to go in for this project. “We can envisage a whole series of applications, from monitoring industrial processes to use on board submarines and other sites where it is vital to control indoor climate”, he says.

By Svein Tønseth

Aase Dragland | alfa
Further information:
http://www.sintef.no

More articles from Physics and Astronomy:

nachricht NASA's Fermi catches gamma-ray flashes from tropical storms
25.04.2017 | NASA/Goddard Space Flight Center

nachricht DGIST develops 20 times faster biosensor
24.04.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>