Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


JHU-led team discovers exotic relatives of protons and neutrons

A team of scientists, including four at The Johns Hopkins University, has discovered two new subatomic particles, rare but important relatives of the familiar, commonplace proton and neutron.

Named "Sigma-sub-b" particles, the two exotic and incredibly quick to decompose particles are like rare jewels mined from mountains of data, said team leader Petar Maksimovic, assistant professor of physics and astronomy in the university's Krieger School of Arts and Sciences.

"These particles are members of what we call the 'baryonic' family, so-called for the Greek word 'barys,' which means heavy," Maksimovic said. "Baryons are particles that contain three quarks, which are the fundamental building blocks of matter."

The simplest baryons are the proton and neutron, which make up the nuclei of atoms of ordinary matter. "These newest members of that family are unstable and ephemeral, but they help us to understand the forces that bind quarks together into matter," Maksimovic said.

Containing the second-heaviest quark – called "the bottom quark" – the new particles are the heaviest baryons found yet: heavier even than a complete helium atom, which has two protons, though lighter than a lithium atom, which has three.

How rare is Sigma-sub-b? The team combed through a hundred trillion proton-antiproton collisions at the Tevatron, the world's most powerful particle accelerator, to find about 240 Sigma-sub-b candidates, Maksimovic said. The new particles are extremely short-lived, decaying within a tiny fraction of a second.

"Little by little, we are compiling an ever-clearer picture of how quarks build matter and how subatomic forces hold quarks together and tear them apart," said Maksimovic, who noted that the discovery -- confirming the expectation of theorists that Sigma-sub-b particles exist -- helps complete the so-called "periodic table of baryons."

There are six different types of quarks: up, down, strange, charm, bottom and top (u, d, s, c, b and t). One of the new baryons discovered by the CDF experiment is made of two up quarks and one bottom quark (u-u-b), the other of two down quarks and a bottom quark (d-d-b). For comparison, protons are u-u-d combinations, while neutrons are d-d-u.

The Tevatron collider helped the team of physicists to recreate the conditions present in the early formation of the universe, reproducing the exotic matter that was abundant in the moments after the big bang. While the matter around us is constructed with only up and down quarks, exotic matter contains other quarks as well, according to Maksimovic.

The Tevatron is located at the Department of Energy's Fermi National Accelerator Laboratory, also known as Fermilab, in Batavia, Ill. Led by Maksimovic, the team also included Johns Hopkins graduate student Jennifer Pursley, former undergraduate student Michael Schmidt and post-doctoral fellow Matthew Martin, along with five other scientists from Fermilab and the University of New Mexico. All are members of the collaboration of 700 physicists working on the CDF detector at Fermilab.

The Tevatron accelerates protons and antiprotons close to the speed of light and makes them collide. In the collisions, energy transforms into mass, according to Einstein's famous equation E=mc^2. The odds of producing bottom quarks -- which in turn transform into the Sigma-sub-b, according to the laws of quantum physics -- are extremely low. But scientists were able to beat the low odds by producing billions of collisions in the Tevatron each second.

"It's amazing that scientists can build a particle accelerator that produces this many collisions, and equally amazing that the CDF collaboration was able to develop a particle detector that can measure them all," said CDF co-spokesman Rob Roser of Fermilab. "We are confident that our data hold the secret to even more discoveries that we will find with time."

Lisa DeNike | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht A new kind of quantum bits in two dimensions
19.03.2018 | Vienna University of Technology

nachricht 'Frequency combs' ID chemicals within the mid-infrared spectral region
16.03.2018 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Neutrons pave the way to accelerated production of lithium-ion cells

20.03.2018 | Power and Electrical Engineering

RWI/ISL-Container Throughput Index with minor decline on a high overall level

20.03.2018 | Business and Finance

Protein controls clumping of platelets during thrombosis and stroke

20.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>