Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Silver bullet: UGA researchers use laser, nanotechnology to rapidly detect viruses

Waiting a day or more to get lab results back from the doctor’s office soon could become a thing of a past. Using nanotechnology, a team of University of Georgia researchers has developed a diagnostic test that can detect viruses as diverse as influenza, HIV and RSV in 60 seconds or less.

In addition to saving time, the technique – which is detailed in the November issue of the journal Nano Letters – could save lives by rapidly detecting a naturally occurring disease outbreak or bioterrorism attack.

“It saves days to weeks,” said lead author Ralph Tripp, Georgia Research Alliance Eminent Scholar in Vaccine Development at the UGA College of Veterinary Medicine. “You could actually apply it to a person walking off a plane and know if they’re infected.”

The technique, called surface enhanced Raman spectroscopy (SERS), works by measuring the change in frequency of a near-infrared laser as it scatters off viral DNA or RNA. This change in frequency, named the Raman shift for the scientist who discovered it in 1928, is as distinct as a fingerprint.

This phenomenon is well known, but Tripp explained that previous attempts to use Raman spectroscopy to diagnose viruses failed because the signal produced is inherently weak.

But UGA physics professor Yiping Zhao and UGA chemistry professor Richard Dluhy experimented with several different metals and methods and found a way to significantly amplify the signal. Using a method they’ve patented, they place rows of silver nanorods 10,000 times finer than the width of a human hair on the glass slides that hold the sample. And, like someone positioning a TV antenna to get the best reception, they tried several angles until they found that the signal is best amplified when the nanorods are arranged at an 86-degree angle.

“The enhancement factors are extraordinary,” Dluhy said. “And the nice thing about this fabrication methodology is that it’s very easy to implement, it’s very cheap and it’s very reproducible.”

Tripp said the technique is so powerful that it has the potential to detect a single virus particle and can also discern virus subtypes and those with mutations such as gene insertions and deletions. This specificity makes it valuable as a diagnostic tool, but also as a means for epidemiologists to track where viruses originate from and how they change as they move through populations.

The researchers have shown that the technique works with viruses isolated from infected cells grown in a lab, and the next step is to study its use in biological samples such as blood, feces or nasal swabs. Tripp said preliminary results are so promising that the researchers are currently working to create an online encyclopedia of Raman shift values. With that information, a technician could readily reference a Raman shift for a particular virus to identify an unknown virus.

To make their finding commercially viable, they’re developing a business model, seeking venture capital and exploring ways to mass produce the silver nanorods. Next year, they plan on moving their enterprise to the Georgia BioBusiness Center, an UGA incubator for startup bio-science companies.

Presently, viruses are first diagnosed with methods that detect the antibodies a person produces in response to an infection. Tripp explained that these tests are prone to false positives because a person can still have antibodies in their system from a related infection decades ago. The tests are also prone to false negatives because some people don’t produce high levels of antibodies.

Because of these limitations, antibody based tests often must be confirmed with a test known as polymerase chain reaction (PCR), which detects the virus itself by copying it many times. The test can take anywhere from several days to two weeks. Tripp said the latter is clearly too long, especially in light of emerging threats such as H5N1 avian influenza.

“For some respiratory viruses, you’ve either cleared the infection at that point or succumbed to the infection,” Tripp said. “What we’ve developed is the next generation of diagnostic testing.”

Sam Fahmy | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>