Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel optical tweezers instrument unravels bacterial DNA

17.11.2006
VU Amsterdam researchers have developed an optical tweezers instrument, which they used to unravel bacterial chromosomes. The researchers, headed by Dr. Gijs Wuite, have demonstrated how an important protein, called H-NS, bridges DNA strands in bacteria.

Thanks to this technology, it has now been proven that the seemingly chaotic cluster of bacterial DNA is in fact organized and can function dynamically. Moreover, the H-NS protein is a potential target for developing medication to treat bacterial infections. The research findings will be published in the scientific journal Nature on November 16, 2006.

Unlike cells in the human body, bacteria do not have a nucleus. These micro-organisms are much less complex than our human body cells, but this, rather surprisingly, makes it more difficult to determine how the DNA in a bacterial cell is organized. Prior to the use of the newly developed optical tweezers instrument, it was very difficult to study the spatial organization of bacterial DNA.

In human and animal cells, DNA-strands are coiled up inside chromosomes and extremely well organized. The bacterial chromosome is much more dynamically organized by a small group of proteins that non-specifically bind the DNA. Consequently, these proteins have more, and more general, functions. The DNA appears to be unorganized, like a ball of noodles in the cell – or so it seemed at least.

For cell division or DNA repair, the bacterium must duplicate its DNA, and this cannot be done without choreographed order. DNA duplication is the result of (among other factors) the action of DNA binding motor proteins: they slide along the DNA and replicate every nucleotide in the DNA-sequence. It was already known that certain proteins prevented the DNA from becoming entangled; but what was unknown is how it was then possible for a motor protein to slide along the DNA-strands. This mystery has now been solved.

Gijs Wuite, Remus Dame and Maarten Noom, the authors of the article to be published in Nature, began by demonstrating that a specific protein (namely, histone-like nucleoid structuring protein, H-NS) bridges two DNA strands. H-NS is a small protein that has on both its ends a small, ball-like element that can attach to DNA, probably fitting in the small cavities along the DNA’s spiral staircase-like structure. Remus Dame: “It’s great that in our measurements the helical shape of the DNA emerges. But what is much more important is that we were able to measure the strength with which the H-NS is bound to the DNA.” It is a weak bond: each H-NS arm is loosely bound to a DNA-helix.

Moreover this bond is unstable: over a certain period of time, the arm of the H-NS comes loose, in order to then reattach itself to the DNA. Because there is a lot of H-NS protein between the two parallel DNA-helices, the overall bridging activity is unhindered if each protein occasionally let’s go and then reattaches itself. Gijs Wuite: “And this precisely explains why motor proteins are unhindered by H-NS when they move along the DNA: the force these proteins exert is greater, and H-NS simply allows them to pass. This has never before been demonstrated.”

Department Science Communication | alfa
Further information:
http://www.nature.com/nature/journal/v444/n7117/index.html
http://www.vu.nl

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>