Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel optical tweezers instrument unravels bacterial DNA

17.11.2006
VU Amsterdam researchers have developed an optical tweezers instrument, which they used to unravel bacterial chromosomes. The researchers, headed by Dr. Gijs Wuite, have demonstrated how an important protein, called H-NS, bridges DNA strands in bacteria.

Thanks to this technology, it has now been proven that the seemingly chaotic cluster of bacterial DNA is in fact organized and can function dynamically. Moreover, the H-NS protein is a potential target for developing medication to treat bacterial infections. The research findings will be published in the scientific journal Nature on November 16, 2006.

Unlike cells in the human body, bacteria do not have a nucleus. These micro-organisms are much less complex than our human body cells, but this, rather surprisingly, makes it more difficult to determine how the DNA in a bacterial cell is organized. Prior to the use of the newly developed optical tweezers instrument, it was very difficult to study the spatial organization of bacterial DNA.

In human and animal cells, DNA-strands are coiled up inside chromosomes and extremely well organized. The bacterial chromosome is much more dynamically organized by a small group of proteins that non-specifically bind the DNA. Consequently, these proteins have more, and more general, functions. The DNA appears to be unorganized, like a ball of noodles in the cell – or so it seemed at least.

For cell division or DNA repair, the bacterium must duplicate its DNA, and this cannot be done without choreographed order. DNA duplication is the result of (among other factors) the action of DNA binding motor proteins: they slide along the DNA and replicate every nucleotide in the DNA-sequence. It was already known that certain proteins prevented the DNA from becoming entangled; but what was unknown is how it was then possible for a motor protein to slide along the DNA-strands. This mystery has now been solved.

Gijs Wuite, Remus Dame and Maarten Noom, the authors of the article to be published in Nature, began by demonstrating that a specific protein (namely, histone-like nucleoid structuring protein, H-NS) bridges two DNA strands. H-NS is a small protein that has on both its ends a small, ball-like element that can attach to DNA, probably fitting in the small cavities along the DNA’s spiral staircase-like structure. Remus Dame: “It’s great that in our measurements the helical shape of the DNA emerges. But what is much more important is that we were able to measure the strength with which the H-NS is bound to the DNA.” It is a weak bond: each H-NS arm is loosely bound to a DNA-helix.

Moreover this bond is unstable: over a certain period of time, the arm of the H-NS comes loose, in order to then reattach itself to the DNA. Because there is a lot of H-NS protein between the two parallel DNA-helices, the overall bridging activity is unhindered if each protein occasionally let’s go and then reattaches itself. Gijs Wuite: “And this precisely explains why motor proteins are unhindered by H-NS when they move along the DNA: the force these proteins exert is greater, and H-NS simply allows them to pass. This has never before been demonstrated.”

Department Science Communication | alfa
Further information:
http://www.nature.com/nature/journal/v444/n7117/index.html
http://www.vu.nl

More articles from Physics and Astronomy:

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

Bodyguards in the gut have a chemical weapon

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>