Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

COROT and the new chapter of planetary searches

15.11.2006
The launch of COROT on 21 December 2006 is a long awaited event in the quest to find planets beyond our Solar System. Searching from above the Earth's atmosphere, COROT – the CNES project with ESA participation - will be the first space mission specifically dedicated to the search for extrasolar planets.

COROT is expected to greatly enlarge the number of known exoplanets during its two-year mission and provide the first detection of rocky planets, perhaps just a few times the mass of the Earth.

"COROT could detect so many planets of this new type, together with plenty of the old type that astronomers will be able to make statistical studies of them," says Malcolm Fridlund, ESA's Project Scientist for COROT.

This will allow astronomers to more accurately predict the number and type of planets that will be found around other stars.

The world of astronomy changed forever on 6 October 1995, when Michel Mayor and Didier Queloz of the Geneva Observatory announced the first discovery of a planet around a star similar to the Sun. As well as celebration, there was surprise because 51 Pegasi b, as the planet became known, was half the mass of Jupiter and orbiting much closer to its parent star than expected. Whereas Mercury orbits the Sun at 57.9 million kilometres in 88 days, 51 Pegasi b shoots around its orbit in just 4.23 days. This indicated that the planet was just 7.8 million kilometres from its star.

An American team led by Geoff Marcy, San Francisco State University, and Paul Butler, University of California, Berkeley, soon discovered other planets around other stars. They too were large, Jupiter-like planets in extremely close orbits.

These planets had not been seen directly. Instead, their presence had been inferred by the gravitational pull they exerted on their parent star. The astronomers had measured the wobble of the star through changes in its light, and used this data to calculate the orbit and minimum mass of the planet.

COROT relies on a new way of detecting planets. As tens of thousands of people witnessed on 8 June 2004, a planet moving across the face of the star creates a noticeable silhouette. On that day, onlookers watched the black dot of Venus slip across the Sun’s bright surface.

COROT is designed to detect such transits of extrasolar planets across the faces of their parent stars. It will monitor the brightness of stars, looking for the slight drop in light caused by the passage of the planet. Because this relies on the chance alignment of the star and the planet with Earth, a large number of stars must be monitored to make certain of seeing enough events. COROT will monitor hundreds of thousands of stars. "The first target field is towards the galactic centre. Then the spacecraft will turn towards Orion," says Fridlund.

COROT will be the first extrasolar planet search mission capable of seeing the smaller, rocky worlds; although they will have to be in close orbits around their stars. COROT also opens the way for the future. Two years later, in October 2008, NASA will launch Kepler, a space telescope with a 0.95 metre mirror. Kepler works the same way as COROT, looking for planetary transits, and is expected to find the first Earth-sized planets in similar orbits to our world.

Following Kepler, a new technique will be needed. The problem is that the larger the telescope's mirror, the smaller its field of view becomes. So building a larger telescope to reach fainter stars means restricting the area of sky it looks at. Although seeing fainter stars brings gains, the field of view shrinks, leaving fewer stars in total available.

Claude Catala, Observatoire de Paris-Meudon, amongst others has proposed a method that may solve this problem. Instead of a larger space telescope with a smaller field of view, the new proposal uses hundreds of 10-cm telescopes in parallel.

Each telescope is smaller than most amateur astronomers use on Earth but each has a wide field of view, 30 degrees across. That’s about 60 times the width of the full Moon. Because they are so small, each tiny telescope is incapable of collecting enough light on its own to make a useable image. However, a computer on the proposed spacecraft would combine the faint images recorded by each tiny telescope. This would give enough information to detect transits. Thus, the future of detecting planetary transits may be to launch a spacecraft that contains hundreds of mini-telescopes.

After this, the next big leap in planetary searches is likely to be the isolation of reflected light from a planet. This would allow the planet’s atmosphere to be chemically analysed. In the case of an Earth-like world, the analysis could reveal signs of life. ESA is currently developing the necessary technology to make such a mission possible. They are developing it under the name of Darwin, to be possibly launched after 2020.

Malcolm Fridlund | alfa
Further information:
http://www.esa.int/esaSC/SEMCBN0CYTE_index_0.html

More articles from Physics and Astronomy:

nachricht Studying fundamental particles in materials
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Seeing the quantum future... literally
16.01.2017 | University of Sydney

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>