Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

COROT and the new chapter of planetary searches

15.11.2006
The launch of COROT on 21 December 2006 is a long awaited event in the quest to find planets beyond our Solar System. Searching from above the Earth's atmosphere, COROT – the CNES project with ESA participation - will be the first space mission specifically dedicated to the search for extrasolar planets.

COROT is expected to greatly enlarge the number of known exoplanets during its two-year mission and provide the first detection of rocky planets, perhaps just a few times the mass of the Earth.

"COROT could detect so many planets of this new type, together with plenty of the old type that astronomers will be able to make statistical studies of them," says Malcolm Fridlund, ESA's Project Scientist for COROT.

This will allow astronomers to more accurately predict the number and type of planets that will be found around other stars.

The world of astronomy changed forever on 6 October 1995, when Michel Mayor and Didier Queloz of the Geneva Observatory announced the first discovery of a planet around a star similar to the Sun. As well as celebration, there was surprise because 51 Pegasi b, as the planet became known, was half the mass of Jupiter and orbiting much closer to its parent star than expected. Whereas Mercury orbits the Sun at 57.9 million kilometres in 88 days, 51 Pegasi b shoots around its orbit in just 4.23 days. This indicated that the planet was just 7.8 million kilometres from its star.

An American team led by Geoff Marcy, San Francisco State University, and Paul Butler, University of California, Berkeley, soon discovered other planets around other stars. They too were large, Jupiter-like planets in extremely close orbits.

These planets had not been seen directly. Instead, their presence had been inferred by the gravitational pull they exerted on their parent star. The astronomers had measured the wobble of the star through changes in its light, and used this data to calculate the orbit and minimum mass of the planet.

COROT relies on a new way of detecting planets. As tens of thousands of people witnessed on 8 June 2004, a planet moving across the face of the star creates a noticeable silhouette. On that day, onlookers watched the black dot of Venus slip across the Sun’s bright surface.

COROT is designed to detect such transits of extrasolar planets across the faces of their parent stars. It will monitor the brightness of stars, looking for the slight drop in light caused by the passage of the planet. Because this relies on the chance alignment of the star and the planet with Earth, a large number of stars must be monitored to make certain of seeing enough events. COROT will monitor hundreds of thousands of stars. "The first target field is towards the galactic centre. Then the spacecraft will turn towards Orion," says Fridlund.

COROT will be the first extrasolar planet search mission capable of seeing the smaller, rocky worlds; although they will have to be in close orbits around their stars. COROT also opens the way for the future. Two years later, in October 2008, NASA will launch Kepler, a space telescope with a 0.95 metre mirror. Kepler works the same way as COROT, looking for planetary transits, and is expected to find the first Earth-sized planets in similar orbits to our world.

Following Kepler, a new technique will be needed. The problem is that the larger the telescope's mirror, the smaller its field of view becomes. So building a larger telescope to reach fainter stars means restricting the area of sky it looks at. Although seeing fainter stars brings gains, the field of view shrinks, leaving fewer stars in total available.

Claude Catala, Observatoire de Paris-Meudon, amongst others has proposed a method that may solve this problem. Instead of a larger space telescope with a smaller field of view, the new proposal uses hundreds of 10-cm telescopes in parallel.

Each telescope is smaller than most amateur astronomers use on Earth but each has a wide field of view, 30 degrees across. That’s about 60 times the width of the full Moon. Because they are so small, each tiny telescope is incapable of collecting enough light on its own to make a useable image. However, a computer on the proposed spacecraft would combine the faint images recorded by each tiny telescope. This would give enough information to detect transits. Thus, the future of detecting planetary transits may be to launch a spacecraft that contains hundreds of mini-telescopes.

After this, the next big leap in planetary searches is likely to be the isolation of reflected light from a planet. This would allow the planet’s atmosphere to be chemically analysed. In the case of an Earth-like world, the analysis could reveal signs of life. ESA is currently developing the necessary technology to make such a mission possible. They are developing it under the name of Darwin, to be possibly launched after 2020.

Malcolm Fridlund | alfa
Further information:
http://www.esa.int/esaSC/SEMCBN0CYTE_index_0.html

More articles from Physics and Astronomy:

nachricht Pulses of electrons manipulate nanomagnets and store information
21.07.2017 | American Institute of Physics

nachricht Vortex photons from electrons in circular motion
21.07.2017 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>