Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Future cancer treatment using antiparticles from the exotic “antiworld”

An international research team has taken the first, but nevertheless promising step towards a new form of radiotherapy for cancer. This team includes scientists at the Department of Physics and Astronomy, the University of Aarhus, as well as the Department of Medical Physics and the Department of Experimental Clinical Oncology, the Aarhus University Hospital.

In an experiment at CERN (the European Organization for Nuclear Research), located near Geneva, the scientists have demonstrated that a beam of antiprotons can destroy cancer cells considerably more effectively than the types of radiation used to date. In the long term, this can lead to a more effective and more gentle treatment for certain tumours.

The results have just been published in the renowned journal Radiotherapy and Oncology.

The mysterious antiparticles have been common knowledge for decades, but the scientists are the first to show the advantage of using antiprotons to destroy cancer cells. The new technique using antiparticles has a number of benefits:

A comparison of damage to the healthy tissue surrounding the tumour shows that antiproton beams destroy cancer cells much more effectively than the beams used to date. This is because the antiprotons have an effect that slightly resembles grenades. They cause most damage to the patient’s cells right at the target point – just as a grenade only explodes when it gets to the end of its trajectory.

Each individual patient therefore requires significantly fewer treatments.
Irradiating cancerous tissue can be carried out with a high degree of spatial precision because it is possible to hit a tumour within areas as small as one cubic millimetre.

An added advantage of antiproton treatment is that it makes it possible to continuously monitor exactly where the irradiation takes place.

Unfortunately, the promising results will first benefit the treatment system in ten years at the earliest. This is partly because producing antiprotons is expensive and requires setting up large, new accelerators specially designed for the purpose. Secondly, a long list of new measurements are required before clinical tests can begin. However, the important point is that the scientists have now proved the significant, positive effect of antiproton irradiation.

This new knowledge itself is an important radiobiological result because the scientists are the first to demonstrate the biological effect of antiprotons. The new knowledge can therefore be used immediately to increase our understanding of how antiparticle beams inactivate cancer cells. As far as the scientists are concerned, the basic scientific insight they have acquired into the biological effect of antiprotons is a major victory in itself, and one that paves the way towards much more cross-disciplinary research. The composition of the research team illustrates the importance placed on interdisciplinary collaboration, as it involves physicists, hospital physicists, doctors, microbiologists and other experts. In addition to the Danish scientists, the team consists of experts from the USA, Canada, Switzerland, the Netherlands and other countries.

The project is funded by the Danish Cancer Society and the Danish Agency for Science, Technology and Innovation.

Antiprotons do not belong to our world

An antiproton is a so-called antiparticle. It is thus part of the mirror world that also consists of the positron – the electron’s antiparticle – as well as other exotic particles. A common feature of them all is that they are not normally found in our world. However, antiprotons are produced in large accelerators at CERN, and have been used there to destroy cancer cells.

The special feature of antiprotons is that their speed can be adjusted so they penetrate the tumour without intruding any further into the patient, and thus cause no further tissue damage. The antiprotons find a normal proton inside the tumour, and this pair is converted to energy and other particles – some of which destroy cancer cells – in a disintegration process.

Dan Frederiksen | alfa
Further information:

More articles from Physics and Astronomy:

nachricht Light-driven atomic rotations excite magnetic waves
24.10.2016 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

First-time reconstruction of infectious bat influenza viruses

25.10.2016 | Life Sciences

Novel method to benchmark and improve the performance of protein measumeasurement techniques

25.10.2016 | Life Sciences

Amazon rain helps make more rain

25.10.2016 | Life Sciences

More VideoLinks >>>