Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Future cancer treatment using antiparticles from the exotic “antiworld”

15.11.2006
An international research team has taken the first, but nevertheless promising step towards a new form of radiotherapy for cancer. This team includes scientists at the Department of Physics and Astronomy, the University of Aarhus, as well as the Department of Medical Physics and the Department of Experimental Clinical Oncology, the Aarhus University Hospital.

In an experiment at CERN (the European Organization for Nuclear Research), located near Geneva, the scientists have demonstrated that a beam of antiprotons can destroy cancer cells considerably more effectively than the types of radiation used to date. In the long term, this can lead to a more effective and more gentle treatment for certain tumours.

The results have just been published in the renowned journal Radiotherapy and Oncology.

The mysterious antiparticles have been common knowledge for decades, but the scientists are the first to show the advantage of using antiprotons to destroy cancer cells. The new technique using antiparticles has a number of benefits:

A comparison of damage to the healthy tissue surrounding the tumour shows that antiproton beams destroy cancer cells much more effectively than the beams used to date. This is because the antiprotons have an effect that slightly resembles grenades. They cause most damage to the patient’s cells right at the target point – just as a grenade only explodes when it gets to the end of its trajectory.

Each individual patient therefore requires significantly fewer treatments.
Irradiating cancerous tissue can be carried out with a high degree of spatial precision because it is possible to hit a tumour within areas as small as one cubic millimetre.

An added advantage of antiproton treatment is that it makes it possible to continuously monitor exactly where the irradiation takes place.

Unfortunately, the promising results will first benefit the treatment system in ten years at the earliest. This is partly because producing antiprotons is expensive and requires setting up large, new accelerators specially designed for the purpose. Secondly, a long list of new measurements are required before clinical tests can begin. However, the important point is that the scientists have now proved the significant, positive effect of antiproton irradiation.

This new knowledge itself is an important radiobiological result because the scientists are the first to demonstrate the biological effect of antiprotons. The new knowledge can therefore be used immediately to increase our understanding of how antiparticle beams inactivate cancer cells. As far as the scientists are concerned, the basic scientific insight they have acquired into the biological effect of antiprotons is a major victory in itself, and one that paves the way towards much more cross-disciplinary research. The composition of the research team illustrates the importance placed on interdisciplinary collaboration, as it involves physicists, hospital physicists, doctors, microbiologists and other experts. In addition to the Danish scientists, the team consists of experts from the USA, Canada, Switzerland, the Netherlands and other countries.

The project is funded by the Danish Cancer Society and the Danish Agency for Science, Technology and Innovation.

Antiprotons do not belong to our world

An antiproton is a so-called antiparticle. It is thus part of the mirror world that also consists of the positron – the electron’s antiparticle – as well as other exotic particles. A common feature of them all is that they are not normally found in our world. However, antiprotons are produced in large accelerators at CERN, and have been used there to destroy cancer cells.

The special feature of antiprotons is that their speed can be adjusted so they penetrate the tumour without intruding any further into the patient, and thus cause no further tissue damage. The antiprotons find a normal proton inside the tumour, and this pair is converted to energy and other particles – some of which destroy cancer cells – in a disintegration process.

Dan Frederiksen | alfa
Further information:
http://www.nat.au.dk/default.asp?id=11926&la=UK

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>