Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Future cancer treatment using antiparticles from the exotic “antiworld”

15.11.2006
An international research team has taken the first, but nevertheless promising step towards a new form of radiotherapy for cancer. This team includes scientists at the Department of Physics and Astronomy, the University of Aarhus, as well as the Department of Medical Physics and the Department of Experimental Clinical Oncology, the Aarhus University Hospital.

In an experiment at CERN (the European Organization for Nuclear Research), located near Geneva, the scientists have demonstrated that a beam of antiprotons can destroy cancer cells considerably more effectively than the types of radiation used to date. In the long term, this can lead to a more effective and more gentle treatment for certain tumours.

The results have just been published in the renowned journal Radiotherapy and Oncology.

The mysterious antiparticles have been common knowledge for decades, but the scientists are the first to show the advantage of using antiprotons to destroy cancer cells. The new technique using antiparticles has a number of benefits:

A comparison of damage to the healthy tissue surrounding the tumour shows that antiproton beams destroy cancer cells much more effectively than the beams used to date. This is because the antiprotons have an effect that slightly resembles grenades. They cause most damage to the patient’s cells right at the target point – just as a grenade only explodes when it gets to the end of its trajectory.

Each individual patient therefore requires significantly fewer treatments.
Irradiating cancerous tissue can be carried out with a high degree of spatial precision because it is possible to hit a tumour within areas as small as one cubic millimetre.

An added advantage of antiproton treatment is that it makes it possible to continuously monitor exactly where the irradiation takes place.

Unfortunately, the promising results will first benefit the treatment system in ten years at the earliest. This is partly because producing antiprotons is expensive and requires setting up large, new accelerators specially designed for the purpose. Secondly, a long list of new measurements are required before clinical tests can begin. However, the important point is that the scientists have now proved the significant, positive effect of antiproton irradiation.

This new knowledge itself is an important radiobiological result because the scientists are the first to demonstrate the biological effect of antiprotons. The new knowledge can therefore be used immediately to increase our understanding of how antiparticle beams inactivate cancer cells. As far as the scientists are concerned, the basic scientific insight they have acquired into the biological effect of antiprotons is a major victory in itself, and one that paves the way towards much more cross-disciplinary research. The composition of the research team illustrates the importance placed on interdisciplinary collaboration, as it involves physicists, hospital physicists, doctors, microbiologists and other experts. In addition to the Danish scientists, the team consists of experts from the USA, Canada, Switzerland, the Netherlands and other countries.

The project is funded by the Danish Cancer Society and the Danish Agency for Science, Technology and Innovation.

Antiprotons do not belong to our world

An antiproton is a so-called antiparticle. It is thus part of the mirror world that also consists of the positron – the electron’s antiparticle – as well as other exotic particles. A common feature of them all is that they are not normally found in our world. However, antiprotons are produced in large accelerators at CERN, and have been used there to destroy cancer cells.

The special feature of antiprotons is that their speed can be adjusted so they penetrate the tumour without intruding any further into the patient, and thus cause no further tissue damage. The antiprotons find a normal proton inside the tumour, and this pair is converted to energy and other particles – some of which destroy cancer cells – in a disintegration process.

Dan Frederiksen | alfa
Further information:
http://www.nat.au.dk/default.asp?id=11926&la=UK

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>