Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Future cancer treatment using antiparticles from the exotic “antiworld”

15.11.2006
An international research team has taken the first, but nevertheless promising step towards a new form of radiotherapy for cancer. This team includes scientists at the Department of Physics and Astronomy, the University of Aarhus, as well as the Department of Medical Physics and the Department of Experimental Clinical Oncology, the Aarhus University Hospital.

In an experiment at CERN (the European Organization for Nuclear Research), located near Geneva, the scientists have demonstrated that a beam of antiprotons can destroy cancer cells considerably more effectively than the types of radiation used to date. In the long term, this can lead to a more effective and more gentle treatment for certain tumours.

The results have just been published in the renowned journal Radiotherapy and Oncology.

The mysterious antiparticles have been common knowledge for decades, but the scientists are the first to show the advantage of using antiprotons to destroy cancer cells. The new technique using antiparticles has a number of benefits:

A comparison of damage to the healthy tissue surrounding the tumour shows that antiproton beams destroy cancer cells much more effectively than the beams used to date. This is because the antiprotons have an effect that slightly resembles grenades. They cause most damage to the patient’s cells right at the target point – just as a grenade only explodes when it gets to the end of its trajectory.

Each individual patient therefore requires significantly fewer treatments.
Irradiating cancerous tissue can be carried out with a high degree of spatial precision because it is possible to hit a tumour within areas as small as one cubic millimetre.

An added advantage of antiproton treatment is that it makes it possible to continuously monitor exactly where the irradiation takes place.

Unfortunately, the promising results will first benefit the treatment system in ten years at the earliest. This is partly because producing antiprotons is expensive and requires setting up large, new accelerators specially designed for the purpose. Secondly, a long list of new measurements are required before clinical tests can begin. However, the important point is that the scientists have now proved the significant, positive effect of antiproton irradiation.

This new knowledge itself is an important radiobiological result because the scientists are the first to demonstrate the biological effect of antiprotons. The new knowledge can therefore be used immediately to increase our understanding of how antiparticle beams inactivate cancer cells. As far as the scientists are concerned, the basic scientific insight they have acquired into the biological effect of antiprotons is a major victory in itself, and one that paves the way towards much more cross-disciplinary research. The composition of the research team illustrates the importance placed on interdisciplinary collaboration, as it involves physicists, hospital physicists, doctors, microbiologists and other experts. In addition to the Danish scientists, the team consists of experts from the USA, Canada, Switzerland, the Netherlands and other countries.

The project is funded by the Danish Cancer Society and the Danish Agency for Science, Technology and Innovation.

Antiprotons do not belong to our world

An antiproton is a so-called antiparticle. It is thus part of the mirror world that also consists of the positron – the electron’s antiparticle – as well as other exotic particles. A common feature of them all is that they are not normally found in our world. However, antiprotons are produced in large accelerators at CERN, and have been used there to destroy cancer cells.

The special feature of antiprotons is that their speed can be adjusted so they penetrate the tumour without intruding any further into the patient, and thus cause no further tissue damage. The antiprotons find a normal proton inside the tumour, and this pair is converted to energy and other particles – some of which destroy cancer cells – in a disintegration process.

Dan Frederiksen | alfa
Further information:
http://www.nat.au.dk/default.asp?id=11926&la=UK

More articles from Physics and Astronomy:

nachricht New NASA study improves search for habitable worlds
20.10.2017 | NASA/Goddard Space Flight Center

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>