Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Milky Way shaped life on Earth

15.11.2006
Frenzied star-making in the Milky Way Galaxy starting about 2400 million years ago had extraordinary effects on life on Earth. Harvests of bacteria in the sea soared and crashed in a succession of booms and busts, with an instability not seen before or since.

According to new results published by Dr. Henrik Svensmark of the Danish National Space Center in the journal Astronomische Nachrichten, the variability in the productivity of life is closely linked to the cosmic rays, the atomic bullets that rain down on the Earth from exploded stars. They were most intense during a baby boom of stars, many of which blew up.

‘The odds are 10,000 to 1 against this unexpected link between cosmic rays and the variable state of the biosphere being just a coincidence, and it offers a new perspective on the connection between the evolution of the Milky Way and the entire history of life over the last 4 billion years,’ Dr Svensmark comments.

Dr Svensmark looked at the long record of life’s bounty given by counts of heavy carbon atoms, carbon-13, in sedimentary rocks. When bacteria and algae in the ocean grow by taking in carbon dioxide, they prefer the ordinary carbon-12 atoms. As a result, the sea becomes enriched in carbon-13, which is acceptable to sea creatures building their carbonate shells. Variations in carbon-13 therefore record how much photosynthetic growth was in progress when the shell-makers were alive – in other words, how productive the biosphere was at that time.

To his surprise, Dr Svensmark noticed that the biggest fluctuations in productivity coincided with high star formation rates and cool periods in Earth’s climate. Conversely, during a billion years when star formation was slow, cosmic rays were less intense and Earth’s climate was warmer, the biosphere was almost unchanging in its productivity.

This reveals a link more subtle than any straightforward idea of, say, a warm climate being life-friendly or a cold climate deadly. The record shows that in all icy epochs the biosphere kept lurching between exceptionally low and exceptionally high productivity. The suggested reason is that, although ice is unfriendly to life, winds are stronger when the world is cold. By stirring the oceans, they improve the supply of nutrients in the surface waters so much that productivity can be higher than in a warm climate. And this, in effect, enlarges the fluctuations in biological productivity.

Most likely, the variations in cosmic radiation affected biological productivity through their influence on cloud formation. Hence, the stellar baby boom 2.4 billion years ago, which resulted in an extraordinarily large number of supernova explosions, had a chilling effect on Earth probably by increasing the cloud cover.

This is one of a number of new perspectives on climate change arising from the discovery that cosmic rays promote the formation of clouds, which have a cooling effect on the surface temperature of Earth. Recent experiments on how the cosmic rays influence cloud formation were reported in DNSC press release 3 October 2006.

Sune Nordentoft Lauritsen | alfa
Further information:
http://www3.interscience.wiley.com/cgi-bin/abstract/113391302/ABSTRACT

More articles from Physics and Astronomy:

nachricht Hope to discover sure signs of life on Mars? New research says look for the element vanadium
22.09.2017 | University of Kansas

nachricht Calculating quietness
22.09.2017 | Forschungszentrum MATHEON ECMath

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>